Discover the most talked about and latest scientific content & concepts.

Concept: Green swordtail


BACKGROUND: Males in some species of the genus Xiphophorus, small freshwater fishes from Meso-America, have an extended caudal fin, or sword – hence their common name “swordtails”. Longer swords are preferred by females from both sworded and – surprisingly also, non-sworded (platyfish) species that belong to the same genus. Swordtails have been studied widely as models in research on sexual selection. Specifically, the pre-existing bias hypothesis was interpreted to best explain the observed bias of females in presumed ancestral lineages of swordless species that show a preference for assumed derived males with swords over their conspecific swordless males. However, many of the phylogenetic relationships within this genus still remained unresolved. Here we construct a comprehensive molecular phylogeny of all 26 known Xiphophorus species, including the four recently described species (X. kallmani, X. mayae, X. mixei and X. monticolus). We use two mitochondrial and six new nuclear markers in an effort to increase the understanding of the evolutionary relationships among the species in this genus. Based on the phylogeny, the evolutionary history and character state evolution of the sword was reconstructed and found to have originated in the common ancestral lineage of the genus Xiphophorus and that it was lost again secondarily. RESULTS: We estimated the evolutionary relationships among all known species of the genus Xiphophorus based on the largest set of DNA markers so far. The phylogeny indicates that one of the newly described swordtail species, Xiphophorus monticolus, is likely to have arisen through hybridization since it is placed with the southern platyfish in the mitochondrial phylogeny, but with the southern swordtails in the nuclear phylogeny. Such discordance between these two types of markers is a strong indication for a hybrid origin. Additionally, by using a maximum likelihood approach the possession of the sexually selected sword trait is shown to be the most likely ancestral state for the genus Xiphophorus. Further, we provide a well supported estimation of the phylogenetic relationships between the previously unresolved northern swordtail groups. CONCLUSIONS: This comprehensive molecular phylogeny of the entire genus Xiphophorus provides evidence that a second swordtail species, X. monticolus, arose through hybridization. Previously, we demonstrated that X. clemenciae, another southern swordtail species, arose via hybridization. These findings highlight the potential key role of hybridization in the evolution of this genus and suggest the need for further investigations into how hybridization contributes to speciation more generally.

Concepts: Evolution, Biology, Species, Phylogenetic tree, Phylogenetics, Green swordtail, Xiphophorus, Southern platyfish


Morphological symmetry is a correlate of fitness-related traits or even a direct target of mate choice in a variety of taxa. In these taxa, when females discriminate among potential mates, increased selection on males should reduce fluctuating asymmetry (FA). Hybrid populations of the swordtails Xiphophorus birchmanni and Xiphophorus malinche vary from panmictic (unstructured) to highly structured, in which reproductive isolation is maintained among hybrids and parental species. We predicted that FA in flanking vertical bars used in sexual signalling should be lower in structured populations, where non-random mating patterns are observed. FA in vertical bars was markedly lower in structured populations than in parental and unstructured hybrid populations. There was no difference in FA between parentals and hybrids, suggesting that hybridisation does not directly affect FA. Rather, variation in FA likely results from contrasting mating patterns in unstructured and structured populations.

Concepts: Natural selection, Reproduction, Gender, Sex, Asymmetry, Green swordtail, Xiphophorus, Southern platyfish


A rapidly increasing body of work is revealing that the genomes of distinct species often exhibit hybrid ancestry, presumably due to post-speciation hybridization between closely related species. Despite the growing number of documented cases, we still know relatively little about how genomes evolve and stabilize following hybridization, and to what extent hybridization is functionally relevant. Here we examine the case of Xiphophorus nezahualcoyotl, a teleost fish whose genome exhibits significant hybrid ancestry. We show that hybridization was relatively ancient and is unlikely to be ongoing. Strikingly, the genome of X. nezahualcoyotl has largely stabilized following hybridization, distinguishing it from examples such as human-Neandertal hybridization. Hybridization-derived regions are remarkably distinct from other regions of the genome, tending to be enriched in genomic regions with reduced constraint. These results suggest that selection has played a role in removing hybrid ancestry from certain functionally important regions. Combined with findings in other systems, our results raise many questions about the process of genomic stabilization and the role of selection in shaping patterns of hybrid ancestry in the genome. This article is protected by copyright. All rights reserved.

Concepts: Gene, Genome, Stabilizer, Copyright, Green swordtail, Xiphophorus


The presence of antibiotics including norfloxacin in the aquatic environment may cause adverse effects in non-target organisms. But the toxic mechanisms of fluoroquinolone to fish species are still not completely elucidated. Thus, it is essential to investigate the response of fish to the exposure of fluoroquinolone at molecular or cellular level for better and earlier prediction of these environmental pollutants toxicity. The sub-chronic toxic effects of norfloxacin (NOR) on swordtail fish (Xiphophoru s helleri) were investigated by measuring mRNA expression of cytochrome P450 1A (CYP1A), cytochrome P450 3A (CYP3A), glutathione S-transferase (GST) and P-glycoprotein (P-gp) and their corresponding enzyme activities (including ethoxyresorufin O-deethylase, erythromycin N-demethylase and GST. Results showed that NOR significantly affected the expression of CYP1A, CYP3A, GST and P-gp genes in swordtails. The gene expressions were more responsive to NOR exposure than their corresponding enzyme activities. Moreover, sexual differences were found in gene expression and enzyme activities of swordtails exposed to NOR. Females displayed more dramatic changes than males. The study further demonstrated that the combined biochemical and molecular parameters were considered as useful biomarkers to improve our understanding of potential ecotoxicological risks of NOR exposure to aquatic organisms.

Concepts: DNA, Gene, Gene expression, Bacteria, Molecular biology, Cytochrome P450, Green swordtail, Xiphophorus


Eight new species of Gyrodact are described from Poecilia mexicana, Poeciliopsis gracilis, Pseudoxiphophorus bimaculatus [syn. = Heterandria bimaculata], and Xiphophorus hellerii collected in the Nautla and La Antigua River Basins in Veracruz, and in the Tecolutla River Basin in Puebla, Mexico. Analyzing the morphology of the marginal hooks, Gyrodactylus pseudobullatarudis n. sp. and Gyrodactylus xtachuna n. sp. are both very similar to Gyrodactylus bullatarudis; Gyrodactylus takoke n. sp. resembles Gyrodactylus xalapensis; Gyrodactylus lhkahuili n. sp. is similar to Gyrodactylus jarocho; and both Gyrodactylus microdactylus n. sp. and Gyrodactylus actzu n. sp. are similar to Gyrodactylus poeciliae in that all three species possess extremely short shaft points. A hypothesis of the systematic relationships of the eight new Gyrodactylus species and some of the known gyrodactylids infecting poeciliids was constructed with sequences of the Internal Transcribed Spacers (ITS1 and ITS2) and the 5.8S ribosomal gene of the rRNA. Phylogenetic trees showed that the new and previously described species of Gyrodactylus infecting poeciliid fishes do not form a monophyletic assemblage. Trees also showed that the eight new species described morphologically correspond to well-supported monophyletic groups; and that morphologically similar species are also phylogenetically close. Additionally, we correct previous erroneous records of the presence of Gyrodactylus bullatarudis on wild Poecilia mexicana and Xiphophorus hellerii collected in Mexico, as re-examination of the original specimens indicated that these corresponded to Gyrodactylus pseudobullatarudis n. sp. (infecting Poecilia mexicana and Xiphophorus hellerii) and to Gyrodactylus xtachuna n. sp. (on Xiphophorus hellerii). Finally, given the widespread anthropogenic translocation of poeciliid fishes for the aquarium trade and mosquito control programs, as well as the existence of invasive, feral poeciliid populations worldwide, we discuss the possibility that gyrodactylid parasites could be introduced along with the fish hosts-this work provides taxonomic information to assess that possibility, as it describes parasites collected from poeciliid fishes within their native distribution range.

Concepts: Drainage basin, Phylogenetic tree, Phylogenetics, Cladistics, Mexico, Poeciliidae, Veracruz, Green swordtail


The present study evaluates the effects of different levels of dietary Lactobacillus acidophilus as feed supplement on intestinal microbiota, skin mucus immune parameters and salinity stress resistance as well as growth performance of black swordtail (Xiphophorus helleri). One-thousand and eight hundred healthy black swordtail larvae (0.03 ± 0.001 g) were randomly distributed in 12 tanks (100 L) at a density of 150 fish per aquaria and fed different levels of dietary L. acidophilus (0, 1.5×10(8), 3×10(8) and 6×10(8) CFU g(-1)) for 10 weeks. At the end of trial, there were significant differences among antibacterial activity of skin mucus in probiotic fed fish and control group (P < 0.05). Furthermore, the skin mucus protein level and alkaline phosphatase activity in control group were significantly lower than those of L. acidophilus fed fish (P < 0.05). Microbiological assessments revealed that feeding with probiotic supplemented diet remarkably increased total autochthonous bacteria and autochthonous lactic acid bacteria levels (P < 0.05). The results showed that dietary administration of L. acidophilus significantly elevated black swordtail resistance against salinity stress (i.e survival %) (P < 0.05). Also, dietary administration of different levels of L. acidophilus improved weight gain, SGR, FCR compared to fish fed unsupplemnted diet (P < 0.05). These results demonstrate beneficial effects of dietary L. acidophilus on mucosal immune parameters, intestinal microbiota, stress resistance and growth parameters of black swordtail and the appropriate inclusion is 6×10(8) CFU g(-1).

Concepts: Bacteria, Gut flora, Microbiology, Lactic acid, Probiotic, Lactobacillus, Lactobacillus acidophilus, Green swordtail


Just as mating patterns can promote speciation or hybridization, the presence of hybridization can shape mating patterns within a population. In this study, we characterized patterns of multiple mating and reproductive skew in a naturally hybridizing swordtail fish species, Xiphophorus birchmanni. We quantified multiple mating using microsatellite markers to genotype embryos from 43 females collected from 2 wild populations. We also used a suite of single-nucleotide polymorphism markers to categorize females and their inferred mates as either parental X. birchmanni or as introgressed individuals, which carried alleles from a sister species, X. malinche. We found that parental and introgressed X. birchmanni females mated multiply with both parental and introgressed males. We found no difference in mating patterns or reproductive skew between parental and introgressed X. birchmanni females. However, nonintrogressed X. birchmanni males mated more often with large, fecund females. These females also had the greatest levels of skew in fertilization success of males. Thus, our results show that X. birchmanni has a polygynandrous mating system and that introgression of X. malinche alleles has only subtle effects on mating patterns in this species.

Concepts: Human, Reproduction, Evolution, Sex, Fertility, Live-bearing fish, Green swordtail, Xiphophorus


The fish genus Xiphophorus consists of 26 species distributed along the eastern slopes of mountain ranges extending from northern Mexico to Belize and Nicaragua. We analyzed light-dependent repair of UV-induced DNA damage in at least two species from each of the four monophyletic Xiphophorus groups. We found that the northern platyfish had significantly reduced photoenzymatic repair compared to the other three groups, including the northern swordtails, southern platyfish and southern swordtails. All of the species of the platyfish, including the Marbled (meyeri), Northern (gordoni) and Monterrey Platyfish (couchianus) are the northernmost species in the genus and are the only three species in the genus that are currently found on the IUCN Red List of Threatened Species. Satellite data from the past 30 years (1979-2008) correlates greater increases in shorter wavelength UVB with higher latitudes within the Xiphophorus range. We suggest that, combined with other consequences of human population growth, anthropogenic deozonation resulting in a disproportionate increase in UVB in temperate latitudes may be a contributing factor in the decline and extirpation of the northern platyfish. This article is protected by copyright. All rights reserved.

Concepts: DNA, DNA repair, Mexico, IUCN Red List, Rio Grande, Green swordtail, Xiphophorus, Southern platyfish


Sexual selection can increase morphological diversity within and among species. Little is known regarding how interspecific variation produced through sexual selection affects other functional systems. Here we examine how morphological diversity resulting from sexual selection impacts aerobic locomotor performance. Using Xiphophorus (swordtail fish) and their close relatives (N = 19 species), we examined whether the evolution of a longer sexually selected sword affects critical swimming speed. We also examined the effect of other sub-organismal, physiological, and morphological traits on critical swimming speed, as well as their relationship with sword length. In correlation analyses, we found no significant relationship between sword length and critical swimming speed. Unexpectedly, we found that critical swimming speed was higher in species with longer swords, after controlling for body size in multiple regression analyses. We also found several suborganismal and morphological predictors of critical swimming speed, as well as a significant negative relationship between sword length and heart and gill mass. Our results suggest that interspecific variation in sword length is not costly for this aspect of swimming performance, but further studies should examine potential costs for other types of locomotion and other components of Darwinian fitness (e.g., survivorship, life-span). This article is protected by copyright. All rights reserved.

Concepts: Regression analysis, Natural selection, Evolution, Population genetics, Selection, Charles Darwin, Copyright, Green swordtail


The toxic effects of triclosan (TCS) on the swordtail fish (Xiphophorus helleri) were assessed based on various biomarkers including enzymatic activities of ethoxyresorufin O-deethylase (EROD), erythromycin N-demethylase (ERND) and glutathione-s-transferase (GST) and mRNA expression levels of CYP1A, CYP3A, glutathione S-transferase (GST) and P-glycoprotein (P-gp). The acute toxicity test showed the LC(50) value of 1.47mgL(-1) for TCS. The mRNA expressions of CYP1A, CYP3A, GST and P-gp showed dose-effect relationships in female swordtail fish when exposed to TCS, These mRNA expression levels were found more sensitive to TCS exposure than the enzymatic activities of EROD, ERND and GST do. In addition, the male fish displayed higher gene expression levels and more dramatic changes in enzyme activities than the females did. Our data further demonstrated that TCS was a typical inducer to Phase I and Phase II metabolism enzymes and genes, suggesting it is a potential ecotoxicological risk to aquatic ecosystems.

Concepts: Gene expression, Bacteria, Transcription, Molecular biology, Enzyme, Messenger RNA, RNA polymerase, Green swordtail