Discover the most talked about and latest scientific content & concepts.

Concept: Green fluorescent protein


Cyan variants of green fluorescent protein are widely used as donors in Förster resonance energy transfer experiments. The popular, but modestly bright, Enhanced Cyan Fluorescent Protein (ECFP) was sequentially improved into the brighter variants Super Cyan Fluorescent Protein 3A (SCFP3A) and mTurquoise, the latter exhibiting a high-fluorescence quantum yield and a long mono-exponential fluorescence lifetime. Here we combine X-ray crystallography and excited-state calculations to rationalize these stepwise improvements. The enhancement originates from stabilization of the seventh β-strand and the strengthening of the sole chromophore-stabilizing hydrogen bond. The structural analysis highlighted one suboptimal internal residue, which was subjected to saturation mutagenesis combined with fluorescence lifetime-based screening. This resulted in mTurquoise2, a brighter variant with faster maturation, high photostability, longer mono-exponential lifetime and the highest quantum yield measured for a monomeric fluorescent protein. Together, these properties make mTurquoise2 the preferable cyan variant of green fluorescent protein for long-term imaging and as donor for Förster resonance energy transfer to a yellow fluorescent protein.

Concepts: DNA, Protein, Fluorescence, Oxygen, Green fluorescent protein, X-ray crystallography, Linus Pauling, Yellow fluorescent protein


Many genetically encoded biosensors use Förster resonance energy transfer (FRET) to dynamically report biomolecular activities. While pairs of cyan and yellow fluorescent proteins (FPs) are most commonly used as FRET partner fluorophores, respectively, green and red FPs offer distinct advantages for FRET, such as greater spectral separation, less phototoxicity, and lower autofluorescence. We previously developed the green-red FRET pair Clover and mRuby2, which improves responsiveness in intramolecular FRET reporters with different designs. Here we report the engineering of brighter and more photostable variants, mClover3 and mRuby3. mClover3 improves photostability by 60% and mRuby3 by 200% over the previous generation of fluorophores. Notably, mRuby3 is also 35% brighter than mRuby2, making it both the brightest and most photostable monomeric red FP yet characterized. Furthermore, we developed a standardized methodology for assessing FP performance in mammalian cells as stand-alone markers and as FRET partners. We found that mClover3 or mRuby3 expression in mammalian cells provides the highest fluorescence signals of all jellyfish GFP or coral RFP derivatives, respectively. Finally, using mClover3 and mRuby3, we engineered an improved version of the CaMKIIα reporter Camuiα with a larger response amplitude.

Concepts: Better, Fluorescence, Gene, Cell, Improve, Green fluorescent protein, Green, Förster resonance energy transfer


The cephalochordate Amphioxus naturally co-expresses fluorescent proteins (FPs) with different brightness, which thus offers the rare opportunity to identify FP molecular feature/s that are associated with greater/lower intensity of fluorescence. Here, we describe the spectral and structural characteristics of green FP (bfloGFPa1) with perfect (100%) quantum efficiency yielding to unprecedentedly-high brightness, and compare them to those of co-expressed bfloGFPc1 showing extremely-dim brightness due to low (0.1%) quantum efficiency. This direct comparison of structure-function relationship indicated that in the bright bfloGFPa1, a Tyrosine (Tyr159) promotes a ring flipping of a Tryptophan (Trp157) that in turn allows a cis-trans transformation of a Proline (Pro55). Consequently, the FP chromophore is pushed up, which comes with a slight tilt and increased stability. FPs are continuously engineered for improved biochemical and/or photonic properties, and this study provides new insight to the challenge of establishing a clear mechanistic understanding between chromophore structural environment and brightness level.

Concepts: Electron, Amino acid, Molecular biology, Optics, Secondary structure, Light, Green fluorescent protein, Radiance


Silicatein from Suberites domuncula was known to catalyze silica deposition in vitro under near neutral pH and ambient temperature conditions. In this study, we employed GST-glutathione (GSH) interaction system to increase the production of silicatein and develop an efficient protein immobilization method. Recombinant silicatein fused with GST (GST-SIL) was produced in E. coli and the GST-SIL protein was employed on GSH-coated glass plate. GST-SIL bound surface or matrix can catalyze the formation of silica layer in the presence of tetraethyl orthosilicate as a substrate at an ambient temperature and neutral pH. During silicatein-mediated silicification, green fluorescent protein (GFP) or horseradish peroxidase (HRP) can be efficiently immobilized on the silica surface. Immobilized GFP or HRP retained their activity and were released gradually. This biocompatible silica coating technique can be employed to prepare biomolecule-immobilized surfaces or matrixes, which are useful for the development of biocatalytic, diagnostic and biosensing system, or tissue culture scaffolds.

Concepts: Protein, Enzyme, Blood, Green fluorescent protein, Escherichia coli, Glutathione, Tetraethyl orthosilicate, RoGFP


In the last two decades the study of Ca(2+) homeostasis in living cells has been enhanced by the explosive development of genetically encoded Ca(2+)-indicators. The cloning of the Ca(2+)-sensitive photoprotein aequorin and of the green fluorescent protein (GFP) from the jellyfish Aequorea victoria has been enormously advantageous. As polypeptides, aequorin and GFP allow their endogenous production in cell systems as diverse as bacteria, yeast, slime molds, plants, and mammalian cells. Moreover, it is possible to specifically localize them within the cell by including defined targeting signals in the amino acid sequence. These two proteins have been extensively engineered to obtain several recombinant probes for different biological parameters, among which Ca(2+) concentration reporters are probably the most relevant. The GFP-based Ca(2+) probes and aequorin are widely employed in the study of intracellular Ca(2+) homeostasis. The new generation of bioluminescent probes that couple the Ca(2+) sensitivity of aequorin to GFP fluorescence emission allows real-time measurements of subcellular Ca(2+) changes in single cell imaging experiments and the video-imaging of Ca(2+) concentrations changes in live transgenic animals that express GFP-aequorin bifunctional probes.

Concepts: DNA, Protein, Gene, Bacteria, Organism, Green fluorescent protein, Jellyfish, Aequorea victoria


C1 catecholamine neurons reside within the rostroventrolateral medulla (RVLM), an area that plays an integral role in blood pressure regulation through reticulospinal projections to sympathetic preganglionic neurons in the thoracic spinal cord. In a previous investigation we mapped the efferent projections of C1 neurons, documenting supraspinal projections to cell groups in the preautonomic network that contribute to the control of cardiovascular function. Light microscopic study also revealed putative local circuit connections within RVLM. In this investigation we tested the hypothesis that RVLM C1 neurons elaborate a local circuit synaptic network that permits communication between C1 neurons giving rise to supraspinal and reticulospinal projections. A replication defective lentivirus vector that expresses enhanced green fluorescent protein (EGFP) under the control of a synthetic dopamine beta hydroxylase (DβH) promoter was used to label C1 neurons and their processes. Confocal fluorescence microscopy demonstrated thin varicose axons immunopositive for EGFP and tyrosine hydroxylase that formed close appositions to C1 somata and dendrites throughout the rostrocaudal extent of the C1 area. Dual-labeled electron microscopic analysis revealed axosomatic, axodendritic and axospinous synaptic contacts with C1 and non-C1 neurons with a distribution recapitulating that observed in the light microscopic analysis. Labeled boutons were large, contained light axoplasm, lucent spherical vesicles, and formed asymmetric synaptic contacts. Collectively these data demonstrate that C1 neurons form a synaptic network within the C1 area that may function to coordinate activity among projection-specific subpopulations of neurons. The data also suggest that the boundaries of RVLM should be defined on the basis of function criteria rather than the C1 phenotype of neurons.

Concepts: Protein, Fluorescence, Neuron, Green fluorescent protein, Axon, Synapse, Dopamine, Norepinephrine


The formation of a thin antibody film on a glass surface using pneumatic spray was investigated as a potential immobilization technique for capturing pathogenic targets. Goat-Escherichia coli O157:H7 IgG films were made by pneumatic spray and compared against the avidin-biotin bridge immobilized films by assaying with green fluorescent protein (GFP) transformed E. coli O157:H7 cells and fluorescent reporter antibodies. Functionality, stability, and immobilization of the films were tested. The pneumatic spray films had lower fluorescence intensity values than the avidin-biotin bridge films but resulted in similar detection for E. coli O157:H7 at 10(5)-10(7)cells/ml sample concentrations with no detection of non-E. coli O157:H7 strains. Both methods also resulted in similar percent capture efficiencies. The results demonstrated that immobilization of antibody via pneumatic spray did not render the antibody non-functional and produced stable antibody films. The amount of time necessary for immobilization of the antibody was reduced significantly from 24h for the avidin-biotin bridge to 7 min using the pneumatic spray technique, with additional benefits of greatly reduced use of materials and chemicals. The pneumatic spray technique promises to be an alternative for the immobilization of antibodies on glass slides for capturing pathogenic targets and use in biosensor type devices.

Concepts: Immune system, Protein, Bacteria, Fluorescence spectroscopy, Green fluorescent protein, Escherichia coli, Escherichia coli O157:H7, Shiga toxin


Cyan fluorescent proteins (CFPs) are widely used as FRET donors in genetically encoded biosensors for live cell imaging. Recently, cyan variants with greatly improved fluorescence quantum yields have been developed by large scale random mutagenesis. We show that the introduction of only two mutations, T65S and H148G, is able to confer equivalent performances on the popular form ECFP, leading to Aquamarine (QY = 0.89, τ(f) = 4.12 ns). Besides an impressive pH stability (pK(½) = 3.3), Aquamarine shows a very low general sensitivity to its environment, and undetectable photoswitching reactions. Aquamarine gives efficient and bright expression in different mammalian cell systems, with a long and single exponential intracellular fluorescence lifetime mostly insensitive to the fusion or the subcellular location of the protein. Aquamarine was also able to advantageously replace the CFP donor in the FRET biosensor AKAR for ratiometric measurements of protein kinase A activity. The performances of Aquamarine show that only two rounds of straightforward single point mutagenesis can be a quick and efficient way to optimize the donor properties in FRET-based biosensors.

Concepts: DNA, Gene, Cell, Molecular biology, Signal transduction, Enzyme, Cell biology, Green fluorescent protein


Split reporter proteins capable of self-association and reactivation have applications in biomedical research, but designing these proteins, especially the selection of appropriate split points, has been somewhat arbitrary. We describe a new methodology to facilitate generating split proteins using split GFP as a self-association module. We first inserted the entire GFP module at one of several candidate split points in the protein of interest, and chose clones that retained the GFP signal and high activity relative to the original protein. Once such chimeric clones were identified, a final pair of split proteins was generated by splitting the GFP-inserted chimera within the GFP domain. Applying this strategy to Renilla reniformis luciferase, we identified a new split point that gave 10 times more activity than the previous split point. The process of membrane fusion was monitored with high sensitivity using a new pair of split reporter proteins. We also successfully identified new split points for HaloTag protein and firefly luciferase, generating pairs of self-associating split proteins that recovered the functions of both GFP and the original protein. This simple method of screening will facilitate the designing of split proteins that are capable of self-association through the split GFP domains.

Concepts: Protein, Enzyme, Virus, Green fluorescent protein, Membrane protein, Firefly, Luciferase, Sea pansy


The genetic manipulation of skeletal muscle cells in vitro is notoriously difficult, especially when using undifferentiated muscle cell lines (myoblasts) or primary muscle stem cells (myosatellites). We therefore optimized methods of gene transfer by overexpressing green fluorescent protein (GFP) in mouse C2C12 cells and in a novel system, primary rainbow trout myosatellite cells. A common lipid-based transfection reagent was used (Lipofectamine 2000) along with three different viral vectors: adeno-associated virus serotype 2 (AAV2), baculovirus (BAC) and lentivirus. Maximal transfection efficiencies of 49% were obtained in C2C12 cells after optimizing cell density and reagent:DNA ratio, although GFP signal rapidly dissipated with proliferation and was not maintained with differentiation. The transduction efficiency of AAV2 was optimized to 65% by extending incubation time and decreasing cell density, although only 30% of cells retained expression after passing. A viral comparison revealed that lentivirus was most efficient at transducing C2C12 myoblasts as 97% of cells were transduced with only 10(6) viral genomes (vg) compared to 54% with 10(8) vg AAV2 and 23% with 10(9) vg BAC. Lentivirus also transduced 90% of primary trout myosatellites compared to 1-10% with AAV2 and BAC. The phosphoglycerate kinase 1 promoter was 10-fold more active than the cytomegalovirus immediate-early promoter in C2C12 cells and both were effective in trout myosatellites. Maximal transduction of C2C12 myotubes was achieved by differentiating myoblasts previously transduced with lentivirus and the pgk promoter. Thus, our optimized protocol proved highly effective in diverse muscle cell systems and could therefore help overcome a common technological barrier. © 2012 The Authors Journal compilation © 2012 FEBS.

Concepts: DNA, Protein, Gene, Cell, Cell biology, Green fluorescent protein, Viral vector, Transfection