Discover the most talked about and latest scientific content & concepts.

Concept: Goose


Formal protected areas will not provide adequate protection to conserve all biodiversity, and are not always designated using systematic or strategic criteria. Using a systematic process, the Important Bird and Biodiversity Area (IBA) network was designed to highlight areas of conservation significance for birds (i.e. IBA trigger species), and more recently general biodiversity. Land use activities that take place in IBAs are diverse, including consumptive and non-consumptive activities. Avitourism in Australia, generally a non-consumptive activity, is reliant on the IBA network and the birds IBAs aim to protect. However, companies tend not to mention IBAs in their marketing. Furthermore, avitourism, like other nature-based tourism has the potential to be both a threatening process as well as a conservation tool. We aimed to assess the current use of IBAs among Australian-based avitour companies' marketing, giving some indication of which IBAs are visited by avitourists on organised tours. We reviewed online avitour itineraries, recorded sites featuring in descriptions of avitours and which IBA trigger species are used to sell those tours. Of the 209 avitours reviewed, Queensland is the most featured state (n = 59 tours), and 73% feature at least one IBA. Daintree (n = 22) and Bruny Island (n = 17) IBAs are the most popular, nationally. Trigger species represent 34% (n = 254 out of 747) of species used in avitour descriptions. The most popular trigger species' are wetland species including; Brolga (n = 37), Black-necked Stork (n = 30) and Magpie Goose (n = 27). Opportunities exist to increase collaboration between avitour companies and IBA stakeholders. Our results can provide guidance for managing sustainability of the avitourism industry at sites that feature heavily in avitour descriptions and enhance potential cooperation between avitour companies, IBA stakeholders and bird conservation organisations.

Concepts: Biodiversity, Conservation biology, Evolution, Bird, Sustainability, Collaboration, Goose, Stork


Avian bornavirus (ABV) has been shown the cause of proventricular dilatation disease (PDD) in psittacines. Many healthy birds are infected with ABV, and the development of PDD in such cases is unpredictable. As a result, the detection of ABV in a sick bird is not confirmation that it is suffering from PDD. Treatment studies are in their infancy. ABV is not restricted to psittacines. It has been found to cause PDD-like disease in canaries. It is also present at a high prevalence in North American geese, swans, and ducks. It is not believed that these waterfowl genotypes can cause disease in psittacines.

Concepts: Disease, Bird, Goose, Swan, Anatidae, Anseriformes, Proventricular Dilatation Disease, Avian Bornavirus


The aims of this study were to determine the prevalence and antimicrobial resistance of Listeria, Salmonella, and Yersinia spp. isolated from duck and goose intestinal contents. A total of 471 samples, including 291 duck and 180 goose intestinal contents, were purchased from wet markets between November 2008 and July 2010. Listeria, Salmonella, and Yersinia spp. were isolated from 58 (12.3%), 107 (22.7%), and 80 (17%) of the samples, respectively. It was concluded that Listeria ivanovii, Salmonella Thompson, and Yersinia enterocolitica were the predominant serovars among Listeria, Salmonella, and Yersinia spp., respectively. Moreover, resistance to tetracycline was common in Listeria (48.3%) and Salmonella spp. (63.6%), whereas 51.3% of the Yersinia spp. isolates were resistant to cephalothin. Therefore, continued surveillance of the prevalence of the pathogens and also of emerging antibiotic resistance is needed to render possible the recognition of foods that may represent risks and also ensure the effective treatment of listeriosis, salmonellosis, and yersiniosis.

Concepts: Bacteria, Antibiotic resistance, Listeria, Yersinia enterocolitica, Yersinia, Goose, Duck, Anatidae


In this study, we characterized for the first time the gut microbiota of Greylag geese (Anser anser) using high-throughput 16S rRNA gene sequencing technology. The results showed that the phyla Firmicutes (78.55%), Fusobacteria (9.38%), Proteobacteria (7.55%), Bacteroidetes (1.82%), Cyanobacteria (1.44%), and Actinobacteria (0.61%) dominated the gut microbial communities in the Greylag geese. Then, the variations of gut microbial community structures and functions among the three geese species, Greylag geese, Bar-headed geese (Anser indicus), and Swan geese (Anser cygnoides), were explored. The greatest gut microbial diversity was found in Bar-headed geese group, while other two groups had the least. The dominant bacterial phyla across all samples were Firmicutes and Proteobacteria, but several characteristic bacterial phyla and genera associated with each group were also detected. At all taxonomic levels, the microbial community structure of Swan geese was different from those of Greylag geese and Bar-headed geese, whereas the latter two groups were less different. Functional KEGG categories and pathways associated with carbohydrate metabolism, energy metabolism, and amino acid metabolism were differentially expressed among different geese species. Taken together, this study could provide valuable information to the vast, and yet little explored, research field of wild birds gut microbiome.

Concepts: Archaea, Bacteria, Gut flora, Microbiology, Goose, Anser, Geese


The impacts of hybridization on the process of speciation are manifold, leading to distinct patterns across the genome. Genetic differentiation accumulates in certain genomic regions, while divergence is hampered in other regions by homogenizing gene flow, resulting in a heterogeneous genomic landscape. A consequence of this heterogeneity is that genomes are mosaics of different gene histories that can be compared to unravel complex speciation and hybridization events. However, incomplete lineage sorting (often the outcome of rapid speciation) can result in similar patterns. New statistical techniques, such as the D-statistic and hybridization networks, can be applied to disentangle the contributions of hybridization and incomplete lineage sorting. We unravel patterns of hybridization and incomplete lineage sorting during and after the diversification of the True Geese (family Anatidae, tribe Anserini, genera Anser and Branta) using an exon-based hybridization network approach and taking advantage of discordant gene tree histories by re-sequencing all taxa of this clade. In addition, we determine the timing of introgression and reconstruct historical effective population sizes for all goose species to infer which demographic or biogeographic factors might explain the observed patterns of introgression.

Concepts: Gene, Genetics, Genome, Goose, Branta, Anser, Anatidae, Anserinae


Black sparrowhawks (Accipiter melanoleucus) recently colonised the Cape Peninsula, South Africa, where the species faces competition for their nest sites from Egyptian geese (Alopochen aegyptiaca) which frequently usurp black sparrowhawk nests. In this paper, we test the hypothesis that multiple nest building by black sparrowhawks is a strategy to cope with this competitor, based on a 14-year long term data set.

Concepts: Accipiter, Goose, Geese, Shelduck, Egyptian Goose, Alopochen, Black Goshawk


The high incidence of hybridization in waterfowl (ducks, geese and swans) makes this bird group an excellent study system to answer questions related to the evolution and maintenance of species boundaries. However, knowledge on waterfowl hybridization is biased towards ducks, with a large knowledge gap in geese. In this review, we assemble the available information on hybrid geese by focusing on three main themes: (1) incidence and frequency, (2) behavioural mechanisms leading to hybridization, and (3) hybrid fertility. Hybridization in geese is common on a species-level, but rare on a per-individual level. An overview of the different behavioural mechanisms indicates that forced extra-pair copulations and interspecific nest parasisitm can both lead to hybridization. Other sources of hybrids include hybridization in captivity and vagrant geese, which may both lead to a scarcity of conspecifics. The different mechanisms are not mutually exclusive and it is currently not possible to discriminate between the different mechanisms without quantitative data. Most hybrid geese are fertile; only in crosses between distantly related species do female hybrids become sterile. This fertility pattern, which is in line with Haldane’s Rule, may facilitate interspecific gene flow between closely related species. The knowledge on hybrid geese should be used, in combination with the information available on hybridization in ducks, to study the process of avian speciation.

Concepts: Gene, Evolution, Bird, Speciation, Goose, Swan, Anatidae, Anseriformes


Geese were domesticated over 6,000 years ago, making them one of the first domesticated poultry. Geese are capable of rapid growth, disease resistance, and high liver lipid storage capacity, and can be easily fed coarse fodder. Here, we sequence and analyze the whole-genome sequence of an economically important goose breed in China and compare it with that of terrestrial bird species.

Concepts: Gene, Archaea, Organism, Bird, Goose, Anatidae, Anseriformes, Waterfowl


The Netherlands is important for wintering migratory herbivorous geese, numbers of which have rapidly increased, leading to conflict with agriculture. In 2005/2006, a new goose management policy aimed to limit compensation payments to farmers by concentrating foraging geese in 80 000 ha of designated ‘go’ areas-where farmers received payment to accommodate them-and scaring geese from ‘no go’ areas elsewhere. Monthly national counts of four abundant goose species during 10 years prior to the new policy and in 8 years following implementation found that 57% of all goose days were spent within ‘go’ areas under the new management, the same as prior to implementation. Such lack of response suggests no predicted learning effects, perhaps because of (i) increases in abundance outside of ‘go’ areas, (ii) irregularly shaped boundaries and enclaves of ‘no go’ farmland within ‘go’ areas and/or (iii) insufficient differences in disturbance levels within and outside designated areas.

Concepts: Netherlands, New York City, Prostitution in the Netherlands, Goose


Migratory connectivity by birds may mutually affect different ecosystems over large distances. Populations of geese overwintering in southern areas while breeding in high-latitude ecosystems have increased strongly over the past decades. The increase is likely due to positive feedbacks caused by climate change at both wintering, stopover sites and breeding grounds, land-use practices at the overwintering grounds and protection from hunting. Here we show how increasing goose populations in temperate regions, and increased breeding success in the Arctic, entail a positive feedback with strong impacts on Arctic freshwater ecosystems in the form of eutrophication. This may again strongly affect community composition and productivity of the ponds, due to increased nutrient loadings or birds serving as vectors for new species.

Concepts: Eutrophication, Climate, Bird, Ecosystem, Feedback, Audio feedback, Arctic Circle, Goose