SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Glycomics

174

Mucins are the main components of the gastrointestinal mucus layer. Mucin glycosylation is critical to most intermolecular and intercellular interactions. However, due to the highly complex and heterogeneous mucin glycan structures, the encoded biological information remains largely encrypted. Here we have developed a methodology based on force spectroscopy to identify biologically accessible glycoepitopes in purified porcine gastric mucin (pPGM) and purified porcine jejunal mucin (pPJM). The binding specificity of lectins Ricinus communis agglutinin I (RCA), peanut (Arachis hypogaea) agglutinin (PNA), Maackia amurensis lectin II (MALII), and Ulex europaeus agglutinin I (UEA) was utilized in force spectroscopy measurements to quantify the affinity and spatial distribution of their cognate sugars at the molecular scale. Binding energy of 4, 1.6, and 26 aJ was determined on pPGM for RCA, PNA, and UEA. Binding was abolished by competition with free ligands, demonstrating the validity of the affinity data. The distributions of the nearest binding site separations estimated the number of binding sites in a 200-nm mucin segment to be 4 for RCA, PNA, and UEA, and 1.8 for MALII. Binding site separations were affected by partial defucosylation of pPGM. Furthermore, we showed that this new approach can resolve differences between gastric and jejunum mucins.-Gunning, A. P., Kirby, A. R., Fuell, C., Pin, C., Tailford L. E., Juge, N. Mining the “glycocode”-exploring the spatial distribution of glycans in gastrointestinal mucin using force spectroscopy.

Concepts: Glycomics, Peanut, Ulex europaeus, Mass, Proteins, Ricin, DNA, Faboideae

167

The first step in influenza infection of the human respiratory tract is binding of the virus to sialic (Sia) acid terminated receptors. The binding of different strains of virus for the receptor is determined by the α linkage of the sialic acid to galactose and the adjacent glycan structure. In this study the N- and O-glycan composition of the human lung, bronchus and nasopharynx was characterized by mass spectrometry. Analysis showed that there was a wide spectrum of both Sia α2-3 and α2-6 glycans in the lung and bronchus. This glycan structural data was then utilized in combination with binding data from 4 of the published glycan arrays to assess whether these current glycan arrays were able to predict replication of human, avian and swine viruses in human ex vivo respiratory tract tissues. The most comprehensive array from the Consortium for Functional Glycomics contained the greatest diversity of sialylated glycans, but was not predictive of productive replication in the bronchus and lung. Our findings indicate that more comprehensive but focused arrays need to be developed to investigate influenza virus binding in an assessment of newly emerging influenza viruses.

Concepts: Respiratory system, Sialic acid, Glycan, Protein, Glycomics, Virus, Consortium for Functional Glycomics, Influenza

28

PURPOSE OF REVIEW: Siglec-8 and Siglec-F are single pass transmembrane inhibitory receptors found on the surface of human and mouse eosinophils, respectively, but very little is known about their physiologic glycan ligands. This article reviews the latest knowledge on this topic and outlines the strategies being used to further define the production and glycobiochemical nature of these molecules in the lung. RECENT FINDINGS: Both Siglec-8 and Siglec-F recognize the same glycan structure, namely 6'-sulfated sialyl Lewis X, as determined using glycan array technologies. Studies have identified α2,3-linked sialylated glycoprotein structures localized to mouse airway epithelium in tissue sections, where their constitutive expression requires the specific sialyltransferase St3gal3. Expression of these ligands in lung is enhanced during allergic inflammation and by cytokines such as IL-13, and is maintained in primary air-liquid interface cultures of mouse lung epithelium. Further characterization suggests that they are high molecular weight sialylated proteins, putatively mucins. By combining analytic glycomics, glycoproteomic mapping, and further in-vitro eosinophil experimentation including the ability of candidate structures to enhance eosinophil apoptosis, a finely detailed appreciation of the structural requirements for productive Siglec-8 and Siglec-F engagement should soon emerge. SUMMARY: An enhanced understanding of Siglec-F, Siglec-8, and their ligands should improve our understanding of endogenous lung pathways limiting the survival of eosinophils within the airway in diseases such as asthma. Knowledge of this biology may also result in novel opportunities for drug development involving glycans and glycomimetics that selectively bind to Siglec-8 and induce eosinophil death.

Concepts: Epithelium, Glycan, Oligosaccharides, Glycomics, CD15, Sialyl lewis x, Immune system, Asthma

27

Seeing the sugar coating: N-Acetyl-glucosamine and mannosamine derivatives tagged with an isonitrile group are metabolically incorporated into cell-surface glycans and can be detected with a fluorescent tetrazine. This bioorthogonal isonitrile-tetrazine ligation is also orthogonal to the commonly used azide-cyclooctyne ligation, and so will allow simultaneous detection of the incorporation of two different sugars.

Concepts: Biochemistry, Carbohydrates, Photosynthesis, Metabolism, Carbohydrate, Sugar, Glycomics, Nutrition

24

Seminal plasma aids sperm by inhibiting premature capacitation, helping in the intracervical transport and formation of oviductal sperm reservoir, all of which appear to be important in fertilization process. Epitopes such as Lewis x and y are known to be present on seminal plasma glycoproteins, which can modulate the maternal immune response. It is suggested by multiple studies that seminal plasma glycoproteins play, largely undiscovered, important roles in the process of fertilization. We have devised a strategy to analyze glycopeptides from a complex, unknown mixture of protease-digested proteins. This analysis provides identification for the glycoproteins, glycosylation sites, glycan compositions and proposed structures from the original sample. This strategy has been applied to human seminal plasma total glycoproteins. We have elucidated glycan compositions and proposed structures for 243 glycopeptides belonging to 73 N-glycosylation sites on 50 glycoproteins. Majority of the proposed glycan structures were complex type (83%) followed by high-mannose (10%) and then hybrid (7%). Most of the glycoproteins were either sialylated, fucosylated or both. Many Lewis x/a and y/b epitopes bearing glycans were found suggesting immune-modulating epitopes on multiple seminal plasma glycoproteins. The study also shows that large scale N-glycosylation mapping is achievable with current techniques and the depth of the analysis is roughly proportional to prefractionation and complexity of the sample.

Concepts: AIDS, Complexity, Spermatozoon, Carbohydrate chemistry, Glycomics, Antibody, Semen, Immune system

20

The biological function of glycosphingolipids (GSLs) is largely determined by their glycan head group moiety. This has placed a renewed emphasis on detailed GSL head group structural analysis. Comprehensive profiling of GSL head groups in biological samples requires the use of endoglycoceramidases with broad substrate specificity and a robust workflow that enables their high-throughput analysis. We present here the first high-throughput glyco-analytical platform for GSL head group profiling. The workflow features enzymatic release of GSL glycans with a novel broad-specificity endoglycoceramidase I (EGCase I) from Rhodococcus triatomea, selective glycan capture on hydrazide beads on a robotics platform, 2AB-fluorescent glycan labelling and analysis by UPLC-HILIC-FLD. R. triatomea EGCase I displayed a wider specificity than known EGCases and was able to efficiently hydrolyze gangliosides, globosides, (n)Lc-type GSLs and cerebrosides. Our workflow was validated on purified GSL standard lipids and was applied to the characterization of GSLs extracted from several mammalian cell lines and human serum. This study should facilitate the analytical workflow in functional glycomics studies and biomarker discovery.

Concepts: Enzyme substrate, Lipids, Biotechnology, Glycomics, Glycan, Glycosphingolipid, Enzyme, Consortium for Functional Glycomics

4

Despite sustained biomedical research effort, influenza A virus remains an imminent threat to the world population and a major healthcare burden. The challenge in developing vaccines against influenza is the ability of the virus to mutate rapidly in response to selective immune pressure. Hemagglutinin is the predominant surface glycoprotein and the primary determinant of antigenicity, virulence and zoonotic potential. Mutations leading to changes in the number of HA glycosylation sites are often reported. Such genetic sequencing studies predict at best the disruption or creation of sequons for N-linked glycosylation; they do not reflect actual phenotypic changes in HA structure. Therefore, combined analysis of glycan micro- and macro-heterogeneity and bioassays will better define the relationships among glycosylation, viral bioactivity and evolution. We present a study that integrates proteomics, glycomics and glycoproteomics of HA before and after adaptation to innate immune system pressure. We combined this information with glycan array and immune lectin binding data to correlate the phenotypic changes with biological activity. Underprocessed glycoforms predominated at the glycosylation sites found to be involved in viral evolution in response to selection pressures and interactions with innate immune-lectins. To understand the structural basis for site-specific glycan microheterogeneity at these sites, we performed structural modeling and molecular dynamics simulations. We observed that the presence of immature, high-mannose type glycans at a particular site correlated with reduced accessibility to glycan remodeling enzymes. Further, the high mannose glycans at sites implicated in immune lectin recognition were predicted to be capable of forming trimeric interactions with the immune-lectin surfactant protein-D.

Concepts: Influenza vaccine, Microbiology, Glycomics, Virus, Evolution, Natural selection, Innate immune system, Immune system

3

It is now acknowledged that extracellular vesicles (EVs) are important effectors in a vast number of biological processes through intercellular transfer of biomolecules. Increasing research efforts in the EV field have yielded an appreciation for the potential role of glycans in EV function. Indeed, recent reports show that the presence of glycoconjugates is involved in EV biogenesis, in cellular recognition and in the efficient uptake of EVs by recipient cells. It is clear that a full understanding of EV biology will require researchers to focus also on EV glycosylation through glycomics approaches. This review outlines the major glycomics techniques that have been applied to EVs in the context of the recent findings. Beyond understanding the mechanisms by which EVs mediate their physiological functions, glycosylation also provides opportunities by which to engineer EVs for therapeutic and diagnostic purposes. Studies characterising the glycan composition of EVs have highlighted glycome changes in various disease states, thus indicating potential for EV glycans as diagnostic markers. Meanwhile, glycans have been targeted as molecular handles for affinity-based isolation in both research and clinical contexts. An overview of current strategies to exploit EV glycosylation and a discussion of the implications of recent findings for the burgeoning EV industry follows the below review of glycomics and its application to EV biology.

Concepts: Consortium for Functional Glycomics, DNA, Molecular biology, Carbohydrate chemistry, Research, Biology, Glycomics, Glycan

2

Sialic acids (Sias) are abundant terminal modifications of protein-linked glycans. A unique feature of Sia, compared with other monosaccharides, is the formation of linear homo-polymers, with its most complex form polysialic acid (polySia). Sia and polySia mediate diverse biological functions and have great potential for therapeutic use. However, technological hurdles in producing defined protein sialylation due to the enormous structural diversity render their precise investigation a challenge. Here, we describe a plant-based expression platform that enables the controlled in vivo synthesis of sialylated structures with different interlinkages and degree of polymerization (DP). The approach relies on a combination of stably transformed plants with transient expression modules. By the introduction of multigene vectors carrying the human sialylation pathway into glycosylation-destructed mutants, transgenic plants that sialylate glycoproteins in α2,6- or α2,3-linkage were generated. Moreover, by the transient coexpression of human α2,8-polysialyltransferases, polySia structures with a DP >40 were synthesized in these plants. Importantly, plant-derived polySia are functionally active, as demonstrated by a cell-based cytotoxicity assay and inhibition of microglia activation. This pathway engineering approach enables experimental investigations of defined sialylation and facilitates a rational design of glycan structures with optimized biotechnological functions.

Concepts: Posttranslational modification, Species, Genetically modified organism, Glycomics, Cell, Transgenic plant, Acid, Sialic acid

2

Glycans normally exist as a dynamic equilibrium of several conformations. A fundamental question concerns how such molecules bind lectins despite disadvantageous entropic loss upon binding. Bisected glycan, a glycan possessing bisecting N-acetylglucosamine (GlcNAc), is potentially a good model for investigating conformational dynamics and glycan-lectin interactions, owing to the unique ability of this sugar residue to alter conformer populations and thus modulate the biological activities. Here we analyzed bisected glycan in complex with two unrelated lectins, Calsepa and PHA-E. The crystal structures of the two complexes show a conspicuous flipped back glycan structure (designated ‘back-fold’ conformation), and solution NMR analysis also provides evidence of ‘back-fold’ glycan structure. Indeed, statistical conformational analysis of available bisected and non-bisected glycan structures suggests that bisecting GlcNAc restricts the conformations of branched structures. Restriction of glycan flexibility by certain sugar residues may be more common than previously thought and impinges on the mechanism of glycoform-dependent biological functions.

Concepts: Complex analysis, Conformation, Glycomics, Chemical bond, Conformational isomerism