SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Glutamine

145

The aim of this study was to find some relationship between amino acid metabolism and the embryo morphokinetic parameters studied via time-lapse analysis. Study included 48 human embryo samples and their culture media. Two groups of embryos were identified: embryos reached the 8-cell stage on day 3 (n=34) and embryos failed to develop at any point during the incubation (n=14). Amino acids levels were measured on day 3 of embryo development; using time-lapse analysis, the precise timing of embryo cleavage, synchrony of division, grade of fragmentation etc. were established. No statistically significant differences between dividing and arresting embryos were observed in terms of amino acids production/consumption and turnover. Amino acids which were part of the culture medium did not exhibit any statistically significant correlation with kinetic parameters with the exception of the grade of fragmentation on day 3; there were negative correlation with glutamate, and positive with glutamine, glycine and taurine. In some dividing and in some arresting embryos appeared new amino acids which strongly correlated with each other, with methionine, but not with any other amino acid that is a regular part of the culture medium.

Concepts: Protein, Bacteria, Amino acid, Acid, Amine, Ammonia, Embryo, Glutamine

26

Plant growth can reportedly be promoted by poly(γ-glutamic acid) (γ-PGA). However, the underlying mechanism is unknown. To reveal the mechanism of γ-PGA, we designed an experiment that investigated the effect of γ-PGA on the nitrogen metabolism of Chinese cabbage hydroponic cultured at different calcium (Ca) levels and varied exogenous Ca(2+) inhibitors. The results showed that nitrate reductase (NR), glutamine synthetase (GS), glutamate synthase, and glutamate dehydrogenase activities in leaves and roots were obviously enhanced by γ-PGA at the normal Ca(2+) level (4.0 mM). Meanwhile, γ-PGA increased the content of total nitrogen, soluble protein, and soluble amino acids in leaves. However, the promotional effect of γ-PGA on fresh weight weakened when Ca(2+) was inadequate. Moreover, γ-PGA not only induced the influx of extracellular Ca(2+) and Ca(2+) in organelles into cytoplasm, but also increased the Ca(2+)-ATPase level to modify Ca(2+) homeostasis in plant cells. In addition, exogenous Ca(2+) inhibitors significantly suppressed the γ-PGA-mediated promotion of cytoplasmic free Ca(2+) level, calmodulin (CaM) content, GS and glutamate dehydrogenase activities. In summary, γ-PGA accelerated the nitrogen metabolism of plants through the Ca(2+)/CaM signaling pathway, thereby improving the growth of the plant.

Concepts: Photosynthesis, Protein, Cell, Amino acid, Metabolism, Eukaryote, Nitrogen, Glutamine

26

A novel biosensor for determination of L-glutamine in pharmaceutical glutamine powder was developed via immobilizing our produced glutaminase enzyme from Hypocria jecorina onto our prepared zinc oxide (ZnO) nanorod and chitosan. ZnO nanorods were prepared as surface-dependent and surface-independent and both were used. The biosensor is specific for L-glutamine and the peculiar analytical properties (linearity range, reproducibility, and accuracy) of it were experimentally determined. The optimum operating conditions of the biosensor such as buffer concentration, buffer pH, and medium temperature effect on the response of biosensor were studied. Km and Vmax values for the our-producing glutaminase enzyme from Hypocria jecorina immobilized on the biosensor were also determined as 0.29 mM and 208.33 mV/min., respectively, from Lineweaver-Burk plot. The biosensor was then used for the determination of glutamine contained in pharmaceutical formulations.

Concepts: Zinc, PH, Titanium dioxide, Buffer solution, Zinc oxide, Sunscreen, Brass, Glutamine

2

Cancer cells undergo a shift in metabolism where they become reliant on nutrients such as the amino-acid glutamine. Glutamine enters the cell via the alanine/serine/cysteine transporter 2 (ASCT2) that is upregulated in several cancers to maintain an increased supply of this nutrient and are therefore an attractive target in cancer therapeutic development. ASCT2 belongs to the glutamate transporter (SLC1A) family but is the only transporter in this family able to transport glutamine. The structural basis for glutamine selectivity of ASCT2 is unknown. Here, we identify two amino-acid residues in the substrate-binding site that are responsible for conferring glutamine selectivity. We introduce corresponding mutations into a prokaryotic homologue of ASCT2 and solve four crystal structures, which reveal the structural basis for neutral amino acid and inhibitor binding in this family. This structural model of ASCT2 may provide a basis for future development of selective ASCT2 inhibitors to treat glutamine-dependent cancers.

Concepts: Protein, Gene expression, Cancer, Bacteria, Amino acid, Nutrition, Glutamic acid, Glutamine

2

The glutamatergic system is a key point in pathogenesis of schizophrenia. Sarcosine (N-methylglycine) is an exogenous amino acid that acts as a glycine transporter inhibitor. It modulates glutamatergic transmission by increasing glycine concentration around NMDA (N-methyl-d-aspartate) receptors. In patients with schizophrenia, the function of the glutamatergic system in the prefrontal cortex is impaired, which may promote negative and cognitive symptoms. Proton nuclear magnetic resonance (¹H-NMR) spectroscopy is a non-invasive imaging method enabling the evaluation of brain metabolite concentration, which can be applied to assess pharmacologically induced changes. The aim of the study was to evaluate the influence of a six-month course of sarcosine therapy on the concentration of metabolites (NAA, N-acetylaspartate; Glx, complex of glutamate, glutamine and γ-aminobutyric acid (GABA); mI, myo-inositol; Cr, creatine; Cho, choline) in the left dorso-lateral prefrontal cortex (DLPFC) in patients with stable schizophrenia. Fifty patients with schizophrenia, treated with constant antipsychotics doses, in stable clinical condition were randomly assigned to administration of sarcosine (25 patients) or placebo (25 patients) for six months. Metabolite concentrations in DLPFC were assessed with 1.5 Tesla ¹H-NMR spectroscopy. Clinical symptoms were evaluated with the Positive and Negative Syndrome Scale (PANSS). The first spectroscopy revealed no differences in metabolite concentrations between groups. After six months, NAA/Cho, mI/Cr and mI/Cho ratios in the left DLPFC were significantly higher in the sarcosine than the placebo group. In the sarcosine group, NAA/Cr, NAA/Cho, mI/Cr, mI/Cho ratios also significantly increased compared to baseline values. In the placebo group, only the NAA/Cr ratio increased. The addition of sarcosine to antipsychotic therapy for six months increased markers of neurons viability (NAA) and neurogilal activity (mI) with simultaneous improvement of clinical symptoms. Sarcosine, two grams administered daily, seems to be an effective adjuvant in the pharmacotherapy of schizophrenia.

Concepts: Nervous system, Brain, Amino acid, Cerebrum, Proteinogenic amino acid, Attention versus memory in prefrontal cortex, Glutamic acid, Glutamine

2

Amino acid profile is a key aspect of human milk (HM) protein quality. We report a systematic review of total amino acid (TAA) and free amino acid (FAA) profiles, in term and preterm HM derived from 13 and 19 countries, respectively. Of the 83 studies that were critically reviewed, 26 studies with 3774 subjects were summarized for TAA profiles, while 22 studies with 4747 subjects were reviewed for FAA. Effects of gestational age, lactation stage, and geographical region were analyzed by Analysis of Variance. Data on total nitrogen (TN) and TAA composition revealed general inter-study consistency, whereas FAA concentrations varied among studies. TN and all TAA declined in the first two months of lactation and then remained relatively unchanged. In contrast, the FAA glutamic acid and glutamine increased, peaked around three to six months, and then declined. Some significant differences were observed for TAA and FAA, based on gestational age and region. Most regional TAA and FAA data were derived from Asia and Europe, while information from Africa was scant. This systematic review represents a useful evaluation of the amino acid composition of human milk, which is valuable for the assessment of protein quality of breast milk substitutes.

Concepts: Protein, Amino acid, Milk, Lactation, Breast, Glutamic acid, Breast milk, Glutamine

2

OBJECTIVE: To evaluate possible abnormal increase in thalamic glutamate/glutamine levels for restless legs syndrome (RLS) indicating increased glutamatergic activity producing arousal that at night disrupts and shortens sleep. METHODS: (1)H MRS of the right thalamus was performed using a 1.5 T GE MRI scanner and the PROBE-P (PRESS) on 28 patients with RLS and 20 matched controls. The Glx signal (combination of mostly glutamate [Glu] and glutamine [Gln]) was assessed as a ratio to the total creatine (Cr). This study tested 2 primary hypotheses: 1) higher thalamic Glx/Cr for patients with RLS than controls; 2) thalamic Glx/Cr correlates with increased wake during the sleep period. RESULTS: The Glx/Cr was higher for patients with RLS than controls (mean ± SD 1.20 ± 0.73 vs 0.80 ± 0.39, t = 2.2, p = 0.016) and correlated significantly with the wake time during the sleep period (r = 0.61, p = 0.007) and all other RLS-related polysomnographic sleep variables (p < 0.05) except for periodic leg movements during sleep (PLMS)/hour. CONCLUSIONS: The primary findings introduce 2 new related dimensions to RLS: abnormalities in a major nondopaminergic neurologic system and the arousal disturbance of sleep. The strong relation of the arousal sleep disturbance to glutamate and the lack of relation to the PLMS motor features of RLS contrasts with the reverse for dopamine of a limited relation to arousal sleep disturbance but strong relation to PLMS. Understanding this dichotomy and the interaction of these 2 differing systems may be important for understanding RLS neurobiology and developing better treatments for RLS.

Concepts: Nervous system, Amino acid, Sleep, Glutamic acid, Thalamus, Dopamine, Restless legs syndrome, Glutamine

1

Activation of autophagy and elevation of glutamine synthesis represent key adaptations to maintain amino acid balance during starvation. In this study, we investigate the role of autophagy and glutamine on the regulation of mTORC1, a critical kinase that regulates cell growth and proliferation. We report that supplementation of glutamine alone is sufficient to restore mTORC1 activity during prolonged amino acid starvation. Inhibition of autophagy abolishes the restorative effect of glutamine, suggesting that reactivation of mTORC1 is autophagy-dependent. Inhibition of glutaminolysis or transamination impairs glutamine-mediated mTORC1 reactivation, suggesting glutamine reactivates mTORC1 specifically through its conversion to glutamate and restoration of non-essential amino acid pool. Despite a persistent drop in essential amino acid pool during amino acid starvation, crosstalk between glutamine and autophagy is sufficient to restore insulin sensitivity of mTORC1. Thus, glutamine metabolism and autophagy constitute a specific metabolic program which restores mTORC1 activity during amino acid starvation.mTORC1 is a critical kinase that regulates cell growth and proliferation. Here the authors show that glutamine metabolism is sufficient to restore mTORC1 activity during prolonged amino acid starvation in an autophagy-dependent manner.

Concepts: Protein, Amino acid, Ammonia, Nutrition, Essential amino acid, Amino acids, Glutamine, Alanine

1

Reduced amplitude of mismatch negativity (MMN) is one of the more promising biological markers of schizophrenia. This finding holds true in both early and chronic phases of the disorder, and is compatible with the glutamatergic dysfunction hypothesis. To further establish MMN as a biomarker of aberrant glutamatergic neurotransmission, an exploration for an association with blood levels of glutamatergic amino acids is an important next step. Despite a large body of work investigating MMN in schizophrenia, no previous studies have undertaken this endeavor. Nineteen patients with first-episode psychosis (FEP), 21 ultra-high risk individuals (UHR), and 16 healthy controls (HC) participated in the study. The MMNs in response to duration change (dMMN) and frequency change (fMMN) were measured. The fasting plasma levels of glutamate, glutamine, glycine, D-serine, and L-serine were measured. dMMN amplitudes were significantly reduced in FEP and UHR, compared to HC. The plasma levels of glutamate of FEP were significantly higher than those of HC. Higher plasma levels of glutamate were associated with smaller dMMN amplitudes in the FEP and HC groups. These findings are compatible with the hypothesis that MMN is a useful biological marker of aberrant glutamatergic neurotransmission in the early stages of schizophrenia.

Concepts: Amino acid, Proteinogenic amino acid, Biomarker, Glutamic acid, Psychosis, Glutamine

1

L-Glutamine (Gln) functions physiologically to balance the carbon and nitrogen requirements of tissues. It has been proposed that in cancer cells undergoing aerobic glycolysis, accelerated anabolism is sustained by Gln-derived carbons, which replenish the tricarboxylic acid (TCA) cycle (anaplerosis). However, it is shown here that in glioblastoma (GBM) cells, almost half of the Gln-derived glutamate (Glu) is secreted and does not enter the TCA cycle, and that inhibiting glutaminolysis does not affect cell proliferation. Moreover, Gln-starved cells are not rescued by TCA cycle replenishment. Instead, the conversion of Glu to Gln by glutamine synthetase (GS; cataplerosis) confers Gln prototrophy, and fuels de novo purine biosynthesis. In both orthotopic GBM models and in patients, (13)C-glucose tracing showed that GS produces Gln from TCA-cycle-derived carbons. Finally, the Gln required for the growth of GBM tumours is contributed only marginally by the circulation, and is mainly either autonomously synthesized by GS-positive glioma cells, or supplied by astrocytes.

Concepts: DNA, Amino acid, Metabolism, Adenosine triphosphate, Glucose, Cellular respiration, Citric acid cycle, Glutamine