SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Glossary of fuel cell terms

174

The Microbial Fuel Cell (MFC) is a bio-electrochemical transducer converting waste products into electricity using microbial communities. Cellular Automaton (CA) is a uniform array of finite-state machines that update their states in discrete time depending on states of their closest neighbors by the same rule. Arrays of MFCs could, in principle, act as massive-parallel computing devices with local connectivity between elementary processors. We provide a theoretical design of such a parallel processor by implementing CA in MFCs. We have chosen Conway’s Game of Life as the ‘benchmark’ CA because this is the most popular CA which also exhibits an enormously rich spectrum of patterns. Each cell of the Game of Life CA is realized using two MFCs. The MFCs are linked electrically and hydraulically. The model is verified via simulation of an electrical circuit demonstrating equivalent behaviours. The design is a first step towards future implementations of fully autonomous biological computing devices with massive parallelism. The energy independence of such devices counteracts their somewhat slow transitions-compared to silicon circuitry-between the different states during computation.

Concepts: Parallel computing, Fuel cell, Cellular automaton, Microbial fuel cell, Glossary of fuel cell terms, Life-like cellular automaton, John Horton Conway, Conway's Game of Life

27

Microbial fuel cell (MFC) technology is a promising technology for electricity production together with simultaneous water treatment. Catalysts play an important role in deciding the MFC performance. In most reports, effect of catalyst - both type and quantity is not optimized. In this paper, synthesis of nanorods of MnO2-catalyst particles for application in Pt-free MFCs is reported. The effect of catalyst loading i.e., weight ratio, with respect to conducting element and binder has been optimized by employing large number of combinations. Using simple theoretical model, it is shown that too high (or low) concentration of catalysts result in loss of MFC performance. The operation of MFC has been investigated using domestic wastewater as source of bio-waste for obtaining real world situation. Maximum power density of ∼61mW/m(2) was obtained when weight ratio of catalyst and conducting species was 1:1. Suitable reasons are given to explain the outcomes.

Concepts: Water, Electrochemistry, Energy development, Fuel cell, Microbial fuel cell, Glossary of fuel cell terms, Electric power, Fuel cells

15

Owing to the serious crossover of methanol from the anode to the cathode through the polymer electrolyte membrane, direct methanol fuel cells (DMFCs) usually use dilute methanol solutions as fuel. However, the use of high-concentration methanol is highly demanded to improve the energy density of a DMFC system. Instead of the conventional strategies (for example, improving the fuel-feed system, membrane development, modification of electrode, and water management), we demonstrate the use of selective electrocatalysts to run a DMFC at high concentrations of methanol. In particular, at an operating temperature of 80°C, the as-fabricated DMFC with core-shell-shell Au@Ag2S@Pt nanocomposites at the anode and core-shell Au@Pd nanoparticles at the cathode produces a maximum power density of 89.7 mW cm(-2) at a methanol feed concentration of 10 M and maintains good performance at a methanol concentration of up to 15 M. The high selectivity of the electrocatalysts achieved through structural construction accounts for the successful operation of the DMFC at high concentrations of methanol.

Concepts: Electrochemistry, Battery, Electrolyte, Electrolysis, Membrane electrode assembly, Glossary of fuel cell terms, Fuel cells, Direct methanol fuel cell

4

The current polymer-exchange membrane fuel cell technology cannot directly use biomass as fuel. Here we present a solar-induced hybrid fuel cell that is directly powered with natural polymeric biomasses, such as starch, cellulose, lignin, and even switchgrass and wood powders. The fuel cell uses polyoxometalates as the photocatalyst and charge carrier to generate electricity at low temperature. This solar-induced hybrid fuel cell combines some features of solar cells, fuel cells and redox flow batteries. The power density of the solar-induced hybrid fuel cell powered by cellulose reaches 0.72 mW cm(-2), which is almost 100 times higher than cellulose-based microbial fuel cells and is close to that of the best microbial fuel cells reported in literature. Unlike most cell technologies that are sensitive to impurities, the cell reported in this study is inert to most organic and inorganic contaminants present in the fuels.

Concepts: Enzyme, Electrochemistry, Cell wall, Biofuel, Energy development, Fuel cell, Microbial fuel cell, Glossary of fuel cell terms

2

In this work we presented a general strategy for the fabrication of membranes with well-defined ions transport channels through solvent-responsive layer-by-layer assembly (SR-LBL). Multilayered poly (diallyldimethylammonium chloride) (PDDA) and poly (acrylic acid) (PAA) complexes were first introduced on the inner pore wall and the surface of sulfonated poly (ether ether ketone)/poly (ether sulfone) (PES/SPEEK) nanofiltration membranes to form ions transport channels with tuned radius. This type of membranes are highly efficient for the separators of batteries especially vanadium flow batteries (VFBs): the VFBs assembled with prepared membranes exhibit an outstanding performance in a wide current density range, which is much higher than that assembled with commercial Nafion 115 membranes. This idea could inspire the development of membranes for other flow battery systems, as well as create further progress in similar areas such as fuel cells, electro-dialysis, chlor-alkali cells, water electrolysis and so on.

Concepts: Water, Hydrogen, Chlorine, Electrolysis, Fuel cell, Glossary of fuel cell terms, Fuel cells, Electric batteries

2

Microbial fuel cell (MFC) is a promising technology to recover electrical energy from different types of waste. However, the power density of MFCs for practical applications is limited by the anode performance, mainly resulting from low bacterial-loading capacity and low extracellular electron transfer (EET) efficiency. In this study, an open three-dimensional (3D) structured electrode was fabricated using a natural loofah sponge as the precursor material. The loofah sponge was directly converted into a continuous 3D macroporous carbon material via a simple carbonization procedure. The loofah sponge carbon (LSC) was decorated with nitrogen-enriched carbon nanoparticles by co-carbonizing polyaniline-hybridized loofah sponges to improve their microscopic structures. The macroscale porous structure of the LSCs greatly increased the bacterial loading capacity. The microscale coating of carbon nanoparticles favored EET due to the enhanced interaction between the bacteria and the anode. Using a single-chamber MFC equipped with the fabricated anode, a power density of 1090 ± 72 mW m-2 was achieved, which is much greater than that obtained by similarly sized traditional 3D anodes. This study introduces a promising method for the fabrication of high-performance anodes from low-cost, sustainable natural materials.

Concepts: Electron, Electrochemistry, Battery, Electrolyte, Electrolysis, Fuel cell, Microbial fuel cell, Glossary of fuel cell terms

0

A microbial fuel cell (MFC) based on a new wild-type strain of Salinivibrio sp. allowed the self-sustained treatment of hypersaline solutions (100 g L-1 , 1.71 m NaCl), reaching a removal of (87±11) % of the initial chemical oxygen demand after five days of operation, being the highest value achieved for hypersaline MFC. The degradation process and the evolution of the open circuit potential of the MFCs were correlated, opening the possibility for online monitoring of the treatment. The use of alginate capsules to trap bacterial cells, increasing cell density and stability, resulted in an eightfold higher power output, together with a more stable system, allowing operation up to five months with no maintenance required. The reported results are of critical importance to efforts to develop a sustainable and cost-effective system that treats hypersaline waste streams and reduces the quantity of polluting compounds released.

Concepts: Gene, Archaea, Bacteria, Organism, Cell wall, Fuel cell, Microbial fuel cell, Glossary of fuel cell terms

0

The removal of antibiotics is crucial for improvement of water quality in animal wastewater treatment. In this paper, the performance of microbial fuel cell (MFC) in terms of degradation of typical antibiotics was investigated. Electricity was successfully produced by using sludge supernatant mixtures and synthesized animal wastewater as inoculation in MFC. Results demonstrated that the stable voltage, the maximum power density and internal resistance of anaerobic self-electrolysis (ASE) -112 and ASE-116 without antibiotics addition were 0.574 V, 5.78 W m-3 and 28.06 Ω, and 0.565 V, 5.82 W m-3 and 29.38 Ω, respectively. Moreover, when adding aureomycin, sulfadimidine, roxithromycin and norfloxacin into the reactors, the performance of MFC was inhibited (0.51 V-0.41 V), while the output voltage was improved with the decreased concentration of antibiotics. However, the removal efficiency of ammonia nitrogen (NH3-N) and total phosphorus (TP) were both obviously enhanced. Simultaneously, LC-MS analysis showed that the removal efficiency of aureomycin, roxithromycin and norfloxacin were all 100% and the removal efficiency of sulfadimidine also reached 99.9%. These results indicated that antibiotics displayed significantly inhibitions for electricity performance but improved the quality of water simultaneously.

Concepts: Bacteria, Water, Water pollution, Sewage, Fuel cell, Microbial fuel cell, Glossary of fuel cell terms, Fuel cells

0

The purpose of this research was to improve microbial fuel cell (MFC) performance - treating landfill-derived waste liquor - by applying effluents of various biogas fermenters as inocula. It turned out that the differences of initial microbial community profiles notably influenced the efficiency of MFCs. In fact, the adaptation time (during 3 weeks of operation) has varied significantly, depending on the source of inoculum and accordingly, the obtainable cumulative energy yields were also greatly affected (65% enhancement in case of municipal wastewater sludge inoculum compared to sugar factory waste sludge inoculum). Hence, it could be concluded that the capacity of MFCs to utilize the complex feedstock was heavily dependent on biological factors such as the origin/history of inoculum, the microbial composition as well as proper acclimation period. Therefore, these parameters should be of primary concerns for adequate process design to efficiently generate electricity with microbial fuel cells.

Concepts: Water, Sewage, Adaptation, Fuel cell, Sludge, Microbial fuel cell, Glossary of fuel cell terms, Fuel cells

0

The elimination of pyraclostrobin by simultaneous microbial degradation and Fenton oxidation was achieved in a microbial fuel cell (MFC) system. After 12 h of incubation, the removal rate of pyraclostrobin was 1.4 mg/L/h at the anode and 1.7 mg/L/h at the cathode. The pyraclostrobin concentration was less than the detection limit (0.1 mg/L) after 72 h at the anode and 24 h at the cathode. The air flow rate, temperature, and pH of the catholyte had significant effects on the generation of H2O2. The maximum production of H2O2was 1.2 mg/L after reaction for 20 h during the Fenton process. Microbial community analysis indicated that functional bacteria in the genera Chryseobacterium, Stenotrophomonas, Arcobacter, and Comamonas were predominant in the anodic biofilm. In conclusion, the MFC-Fenton system provides an effective approach for treating environmental contaminants.

Concepts: Electrochemistry, Battery, Electrolyte, Electrolysis, Galvanic cell, Fuel cell, Microbial fuel cell, Glossary of fuel cell terms