SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Ginkgo

184

A near-perfect mimetic association between a mecopteran insect species and a ginkgoalean plant species from the late Middle Jurassic of northeastern China recently has been discovered. The association stems from a case of mixed identity between a particular plant and an insect in the laboratory and the field. This confusion is explained as a case of leaf mimesis, wherein the appearance of the multilobed leaf of Yimaia capituliformis (the ginkgoalean model) was accurately replicated by the wings and abdomen of the cimbrophlebiid Juracimbrophlebia ginkgofolia (the hangingfly mimic). Our results suggest that hangingflies developed leaf mimesis either as an antipredator avoidance device or possibly as a predatory strategy to provide an antiherbivore function for its plant hosts, thus gaining mutual benefit for both the hangingfly and the ginkgo species. This documentation of mimesis is a rare occasion whereby exquisitely preserved, co-occurring fossils occupy a narrow spatiotemporal window that reveal likely reciprocal mechanisms which plants and insects provide mutual defensive support during their preangiospermous evolutionary histories.

Concepts: Evolution, Insect, Plant, Mimicry, Leaf, Lepidoptera, Ginkgo, Batesian mimicry

175

Numerous studies have looked at the potential benefits of various nootropic drugs such as Ginkgo biloba extract (EGb761®; Tanakan®) and piracetam (Nootropyl®) on age-related cognitive decline often leading to inconclusive results due to small sample sizes or insufficient follow-up duration. The present study assesses the association between intake of EGb761® and cognitive function of elderly adults over a 20-year period.

Concepts: Time, Sample size, Cognition, Ginkgo biloba, Association of Ideas, Ginkgo, Nootropic, Piracetam

174

Laboratory evidence suggests that certain specialty dietary supplements have antiinflammatory properties, though evidence in humans remains limited. Data on a nationally representative sample of 9,947 adults from the 1999-2004 cycles of the National Health and Nutrition Examination Survey were used to assess the associations between specialty supplement use and inflammation, as measured by serum high-sensitivity C-reactive protein (hs-CRP) concentration. Using survey-weighted multivariate linear regression, significant reductions in hs-CRP concentrations were associated with regular use of glucosamine (17%, 95% confidence interval (CI): 7, 26), chondroitin (22%, 95% CI: 8, 33), and fish oil (16%, 95% CI: 0.3, 29). No associations were observed between hs-CRP concentration and regular use of supplements containing methylsulfonylmethane, garlic, ginkgo biloba, saw palmetto, or pycnogenol. These results suggest that glucosamine and chondroitin supplements are associated with reduced inflammation in humans and provide further evidence to support an inverse association between use of fish oil supplements and inflammation. It is important to further investigate the potential antiinflammatory role of these supplements, as there is a need to identify safe and effective ways to reduce inflammation and the burden of inflammation-related diseases such as cancer and cardiovascular disease.

Concepts: Inflammation, Chondroitin sulfate, Nutrition, Cardiovascular disease, Anti-inflammatory, C-reactive protein, Ginkgo biloba, Ginkgo

35

Ginkgo biloba L. (Ginkgoaceae) is one of the most distinctive plants. It possesses a suite of fascinating characteristics including a large genome, outstanding resistance/tolerance to abiotic and biotic stresses, and dioecious reproduction, making it an ideal model species for biological studies. However, the lack of a high-quality genome sequence has been an impediment to our understanding of its biology and evolution.

Concepts: DNA, Gene, Biology, Organism, Life, Drosophila melanogaster, Ginkgo biloba, Ginkgo

27

Flavonols and terpene lactones are putatively responsible for the properties of Ginkgo biloba leaf extracts that relate to prevention and treatment of cardiovascular disease and cerebral insufficiency. Here, we characterized rat systemic and cerebral exposure to these ginkgo compounds after dosing, as well as the compounds' pharmacokinetics.

Concepts: Cardiovascular disease, Rat, Leaf, Ginkgo biloba, Ginkgo

26

The origins of the five groups of living seed plants, including the single relictual species Ginkgo biloba, are poorly understood, in large part because of very imperfect knowledge of extinct seed plant diversity. Here we describe well-preserved material from the Early Cretaceous of Mongolia of the previously enigmatic Mesozoic seed plant reproductive structure Umaltolepis, which has been presumed to be a ginkgophyte. Abundant new material shows that Umaltolepis is a seed-bearing cupule that was borne on a stalk at the tip of a short shoot. Each cupule is umbrella-like with a central column that bears a thick, resinous, four-lobed outer covering, which opens from below. Four, pendulous, winged seeds are attached to the upper part of the column and are enclosed by the cupule. Evidence from morphology, anatomy, and field association suggests that the short shoots bore simple, elongate Pseudotorellia leaves that have similar venation and resin ducts to leaves of living GinkgoUmaltolepis seed-bearing structures are very different from those of Ginkgo but very similar to fossils described previously as Vladimaria. Umaltolepis and Vladimaria do not closely resemble the seed-bearing structures of any living or extinct plant, but are comparable in some respects to those of certain Peltaspermales and Umkomasiales (corystosperms). Vegetative similarities of the Umaltolepis plant to Ginkgo, and reproductive similarities to extinct peltasperms and corystosperms, support previous ideas that Ginkgo may be the last survivor of a once highly diverse group of extinct plants, several of which exhibited various degrees of ovule enclosure.

Concepts: Plant, Seed, Plant morphology, Cretaceous, Embryophyte, Ginkgo, Spermatophyte, Bennettitales

23

Several drugs, including aminoglycosides and platinum-based chemotherapy agents, are well known for their ototoxic properties. However, FDA-approved drugs are not routinely tested for ototoxicity, so their potential to affect hearing often goes unrecognized. This issue is further compounded for natural products, where there is a lack of FDA oversight and the manufacturer is solely responsible for ensuring the safety of their products. Natural products such as herbal supplements are easily accessible and commonly used in the practice of traditional eastern and alternative medicine. Using the zebrafish lateral line, we screened a natural products library to identify potential ototoxins. We found that the flavonoids quercetin and kaempferol, both from the Gingko biloba plant, demonstrated significant ototoxicity, killing up to 30 % of lateral line hair cells. We then examined a third Ginkgo flavonoid, isorhamnetin, and found similar levels of ototoxicity. After flavonoid treatment, surviving hair cells demonstrated reduced uptake of the vital dye FM 1-43FX, suggesting that the health of the remaining hair cells was compromised. We then asked if these flavonoids enter hair cells through the mechanotransduction channel, which is the site of entry for many known ototoxins. High extracellular calcium or the quinoline derivative E6 berbamine significantly protected hair cells from flavonoid damage, implicating the transduction channel as a site of flavonoid uptake. Since known ototoxins activate cellular stress responses, we asked if reactive oxygen species were necessary for flavonoid ototoxicity. Co-treatment with the antioxidant D-methionine significantly protected hair cells from each flavonoid, suggesting that antioxidant therapy could prevent hair cell loss. How these products affect mammalian hair cells is still an open question and will be the target of future experiments. However, this research demonstrates the potential for ototoxic damage caused by unregulated herbal supplements and suggests that further supplement characterization is warranted.

Concepts: Antioxidant, Chemotherapy, Flavonoid, Cisplatin, Ginkgo biloba, Flavonols, Ginkgo, Living fossil

10

The fossil record of Ginkgo leaf and reproductive organs has been well dated to the Mid-Jurassic (170 Myr). However, the fossil wood record that can safely be assigned to Ginkgoales has not yet been reported from strata predating the late Early Cretaceous (ca. 100 Myr). Here, we report a new fossil wood from the Mid-Late Jurassic transition deposit (153-165 Myr) of northeastern China. The new fossil wood specimen displays several Ginkgo features, including inflated axial parenchyma and intrusive tracheid tips. Because it is only slightly younger than the oldest recorded Ginkgo reproductive organs (the Yima Formation, 170 Myr), this fossil wood very probably represents the oldest bona fide fossil Ginkgo wood and the missing ancestral form of Ginkgo wood evolution.

Concepts: Evolution, Geology, Fossil, Dinosaur, Bioerosion, Ginkgo, Trace fossil, Fossils

3

Molecular phylogenetic studies have not yet reached a consensus on the placement of Ginkgoales, which is represented by the only living species, Ginkgo biloba (common name: ginkgo). At least six discrepant placements of ginkgo have been proposed. This study aimed to use the chloroplast phylogenomic approach to examine possible factors that lead to such disagreeing placements. We found the sequence types used in the analyses as the most critical factor in the conflicting placements of ginkgo. In addition, the placement of ginkgo varied in the trees inferred from nucleotide sequences, which notably depended on breadth of taxon sampling, tree-building methods, codon positions, positions of Gnetopsida (common name: gnetophytes), and including or excluding gnetophytes in datasets. In contrast, the trees inferred from amino acid sequences congruently supported the monophyly of Cycadales (common name: cycads) and ginkgo, regardless of which factors were examined. Our site-stripping analysis further revealed that the high substitution saturation of nucleotide sequences mainly derived from the third codon positions and contributed to the variable placements of ginkgo. In summary, the possible misleading factors we surveyed did not affect results inferred from analyses of amino acid sequences. Congruent topologies in our amino acid trees give more confidence in supporting the ginkgo-cycad sister-group hypothesis.

Concepts: DNA, Gene, Amino acid, Plant, Phylogenetics, Ginkgo biloba, Ginkgo, Ginkgoaceae

2

Patients with psychotic disorders regularly use natural medicines, although it is unclear whether these are effective and safe. The aim of this study was to provide an overview of evidence for improved outcomes by natural medicines. A systematic literature search was performed through Medline, PsycINFO, CINAHL, and Cochrane until May 2015. In 110 randomized controlled trials, evidence was found for glycine, sarcosine, N-acetylcysteine, some Chinese and ayurvedic herbs, ginkgo biloba, estradiol, and vitamin B6 to improve psychotic symptoms when added to antipsychotics. Ginkgo biloba and vitamin B6 seemed to reduce tardive dyskinesia and akathisia. Results on other compounds were negative or inconclusive. All natural agents, except reserpine, were well tolerated. Most study samples were small, study periods were generally short, and most results need replication. However, there is some evidence for beneficial effects of certain natural medicines.

Concepts: Evidence-based medicine, Systematic review, Randomized controlled trial, Tardive dyskinesia, Antipsychotic, Psychosis, Dopamine, Ginkgo