SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Gilt-head bream

168

In this study, for the first time, both neuropeptides isotocin (IT) and arginine vasotocin (AVT) have been identified and measured in urophysis, the neurohaemal organ of the caudal neurosecretory system of teleost fish. So far, AVT, but not IT, was quantified by radioimmunoassay (RIA) in urophysis of several fish species. We have used high-performance liquid chromatographic assay with fluorescence detection (HPLC-FL) preceded by solid-phase extraction (SPE) and liquid chromatography-electrospray ionization triple-quadrupole tandem mass spectrometry (LC-ESI MS/MS) technique to determine both neuropeptides in urophysis of three fish species. The efficiency of peptide’s SPE extraction was 79-85 %. In HPLC-FL method, the limits of detection (LOD) and quantification (LOQ) were estimated as 1.0 and 3.4 pmol/mL for IT and 0.25 and 2.20 pmol/mL for AVT. In LC-MS/MS method, LOD and LOQ were estimated as 0.4 and 1.2 pmol/mL for IT and 0.06 and 0.2 pmol/mL for AVT. The chromatographic methods are good alternative for RIA, because enable to measure both nonapeptides simultaneously in one sample. In round goby (Neogobius melanostomus), three-spined stickleback (Gasterosteus aculeatus) and sea bream (Sparus aurata), urophysial IT concentrations ranged between 0.056 and 0.678 pmol/mg tissue and AVT concentrations ranged between 0.0008 (or even below detection threshold) and 0.084 pmol/mg tissue.

Concepts: Mass spectrometry, Measurement, Analytical chemistry, Actinopterygii, Tandem mass spectrometry, Three-spined stickleback, Gasterosteiformes, Gilt-head bream

27

Spontaneous ovarian tunica albuginea contractility was evaluated in gilthead seabream (Sparus aurata L.) at different phases of the reproductive cycle. Fourteen adult females were sampled from February to November 2012 in a commercial fish farm, and ovaries were removed and processed for histological and contractility analyses. Fish reproductive stages were evaluated on haematoxylin-eosin-stained ovary sections or by simple macroscopic observation of hydrated oocytes in spawning individuals. Tunica albuginea spontaneous contractility was recorded by using ovary wall strips mounted in an organ bath containing modified Ringer’s solution. Ovary macro- and microscopic analyses allowed the identification of three different reproductive conditions: vitellogenesis, spawning and regressing. The gilthead seabream tunica albuginea was capable to contract spontaneously, and significant differences were found in mean contraction amplitude among the three reproductive states, with the highest value recorded in individuals in regressing condition and the lowest in individuals at spawning stage. No differences in mean contractility frequency among the three different groups were found. Possible involvement of spontaneous contractility in facilitating developing follicle advancement towards the ovarian lumen within the ovary and in supporting recovery of regressing ovaries may be hypothesized. The low contractility observed during the final oocyte maturation and spawning phases does not seem to support a role of tunica albuginea during ovulation, which could conversely involve theca cell contraction. Alternatively, possible single instantaneous contractions of tunica albuginea muscle fibres, not detected in the present study, could occur during ovulation in response to neuro-hormonal stimulations; a role of abdominal wall musculature in ovary “squeezing” and consequent release of ovulated eggs cannot be excluded.

Concepts: Scientific method, Reproductive system, Female reproductive system, Ovarian follicle, Folliculogenesis, Ovary, Gilt-head bream, Sparidae

23

The interest in animal personality, broadly defined as consistency of individual behavioural traits over time and across contexts, has increased dramatically over the last years. Individual differences in behaviour are no longer recognised as noise around a mean but rather as adaptive variation and thus, essentially, raw material for evolution. Animal personality has been considered evolutionary conserved and has been shown to be present in all vertebrates including fish. Despite the importance of evolutionary and comparative aspects in this field, few studies have actually documented consistency across situations in fish. In addition, most studies are done with individually housed fish which may pose additional challenges when interpreting data from social species. Here, we investigate, for the first time in fish, whether individual differences in behavioural responses to a variety of challenges are consistent over time and across contexts using both individual and grouped-based tests. Twenty-four juveniles of Gilthead seabream Sparus aurata were subjected to three individual-based tests: feed intake recovery in a novel environment, novel object and restraining and to two group-based tests: risk-taking and hypoxia. Each test was repeated twice to assess consistency of behavioural responses over time. Risk taking and escape behaviours during restraining were shown to be significantly consistent over time. In addition, consistency across contexts was also observed: individuals that took longer to recover feed intake after transfer into a novel environment exhibited higher escape attempts during a restraining test and escaped faster from hypoxia conditions. These results highlight the possibility to predict behaviour in groups from individual personality traits.

Concepts: Psychology, Risk, Behavior, Human behavior, Big Five personality traits, Gilt-head bream, Sparidae, Sparus

11

There is a constant need to find feed additives that improve health and nutrition of farmed fish and lessen the intestinal inflammation induced by plant-based ingredients. The objective of this study was to evaluate the effects of adding an organic acid salt to alleviate some of the detrimental effects of extreme plant-ingredient substitution of fish meal (FM) and fish oil (FO) in gilthead sea bream diet. Three experiments were conducted. In a first trial (T1), the best dose (0.4%) of sodium butyrate (BP-70 ®NOREL) was chosen after a short (9-weeks) feeding period. In a second longer trial (T2) (8 months), four diets were used: a control diet containing 25% FM (T2-D1) and three experimental diets containing 5% FM (T2-D2, T2-D3, T2-D4). FO was the only added oil in D1, while a blend of plant oils replaced 58% and 84% of FO in T2-D2, and T2-D3 and T2-D4, respectively. The latter was supplemented with 0.4% BP-70. In a third trial (T3), two groups of fish were fed for 12 and 38 months with D1, D3 and D4 diets of T2. The effects of dietary changes were studied using histochemical, immunohistochemical, molecular and electrophysiological tools. The extreme diet (T2-D3) modified significantly the transcriptomic profile, especially at the anterior intestine, up-regulating the expression of inflammatory markers, in coincidence with a higher presence of granulocytes and lymphocytes in the submucosa, and changing genes involved in antioxidant defences, epithelial permeability and mucus production. Trans-epithelial electrical resistance (Rt) was also decreased (T3-D3). Most of these modifications were returned to control values with the addition of BP-70. None of the experimental diets modified the staining pattern of PCNA, FABP2 or ALPI. These results further confirm the potential of this additive to improve or reverse the detrimental effects of extreme fish diet formulations.

Concepts: Inflammation, Acid, Nutrition, Fat, Seafood, Aquaculture, Gilt-head bream, Sparidae

4

The constant increase of aquaculture production and wealthy seafood consumption has forced the industry to explore alternative and more sustainable raw aquafeed materials, and plant ingredients have been used to replace marine feedstuffs in many farmed fish. The objective of the present study was to assess whether plant-based diets can induce changes in the intestinal mucus proteome, gut autochthonous microbiota and disease susceptibility of fish, and whether these changes could be reversed by the addition of sodium butyrate to the diets. Three different trials were performed using the teleostean gilthead sea bream (Sparus aurata) as model. In a first preliminary short-term trial, fish were fed with the additive (0.8%) supplementing a basal diet with low vegetable inclusion (D1) and then challenged with a bacteria to detect possible effects on survival. In a second trial, fish were fed with diets with greater vegetable inclusion levels (D2, D3) and the long-term effect of sodium butyrate at a lower dose (0.4%) added to D3 (D4 diet) was tested on the intestinal proteome and microbiome. In a third trial, the long-term effectiveness of sodium butyrate (D4) to prevent disease outcome after an intestinal parasite (Enteromyxum leei) challenge was tested.

Concepts: Time, Bacteria, Effect, Intestinal parasite, Seafood, Aquaculture, Gilt-head bream, Sparidae

2

A metabolomic study has been performed to identify sensitive and robust biomarkers of malnutrition in farmed fish, using gilthead sea bream (Sparus aurata) as a model. The metabolomic fingerprinting of serum from fasted fish was assessed by means of ultra-high performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. More than 15,000 different m/z ions were detected and Partial Least Squares-Discriminant analysis allowed a clear differentiation between the two experimental groups (fed and 10-day fasted fish) with more than 90% of total variance explained by the two first components. The most significant metabolites (up to 45) were elucidated on the basis of their tandem mass spectra with a broad representation of amino acids, oligopeptides, urea cycle metabolites, L-carnitine-related metabolites, glutathione-related metabolites, fatty acids, lysophosphatidic acids, phosphatidylcholines as well as biotin- and noradrenaline-related metabolites. This untargeted approach highlighted important adaptive responses in energy and oxidative metabolism, contributing to identify robust and nutritionally-regulated biomarkers of health and metabolic condition that will serve to assess the welfare status of farmed fish.

Concepts: Protein, Amino acid, Ammonia, Metabolism, Nutrition, Mass spectrometry, Biochemistry, Gilt-head bream

1

Lymphocystis disease is a geographically widespread disease affecting more than 150 different species of marine and freshwater fish. The disease, provoked by the iridovirus lymphocystis disease virus (LCDV), is characterized by the appearance of papilloma-like lesions on the skin of affected animals that usually self-resolve over time. Development of the disease is usually associated with several environmental factors and, more frequently, with stress conditions provoked by the intensive culture conditions present in fish farms. In gilthead seabream (Sparus aurata), an economically important cultured fish species in the Mediterranean area, a distinct LCDV has been identified but not completely characterized yet. We have used direct sequencing of the virome of lymphocystis lesions from affected S. aurata to obtain the complete genome of a new LCDV-Sa species that is the largest vertebrate iridovirus sequenced to date. Importantly, this approach allowed us to assemble the full-length circular genome sequence of two previously unknown viruses belonging to the papilloma- and polyomaviruses termed Sparus aurata papillomavirus 1 (SaPV1) and Sparus aurata polyomavirus 1 (SaPyV1), respectively. Epidemiological surveys showed that lymphocystis disease was frequently associated with the concurrent appearance of one or both of the new viruses. SaPV1 has unique characteristics such as an intron within the L1 gene and, as the first member of the Papillomaviridae family described in fish, provides evidence for a more ancient origin of this family than previously thought.

Concepts: DNA, Gene, Virus, Genome, RNA, Polyomavirus, Gilt-head bream, Sparidae

0

Bacterial diversity of whole gilt-head sea bream (Sparus aurata L. 1758) originating from Ionian and Aegean Sea aquaculture farms and stored at 0 (ice), 4 and 8 °C was determined by 16S rRNA gene amplicon sequencing method using the Illumina’s MiSeq platform. The composition of Aerobic Plate Counts (APC) was also monitored by 16S rRNA gene sequencing. The rejection time point of sea bream from either area, as determined by sensory evaluation, was about 14, 6 and 3 days at 0, 4 and 8 °C, respectively. APC was approximately 4.5 log cfu/g at day 0 and ranged from 7.5 to 8.5 log cfu/g at sensory rejection. Culture-depended analysis showed that Pseudomonas and Shewanella were the most abundant microorganisms grown on plates for both seas. Moreover, culture-independent analysis of DNA extracted directly from fish flesh showed that sea bream originating from different geographical areas exhibited different bacterial diversity. Pseudomonas and Psychrobacter were the dominant microorganisms of chill-stored fish from Ionian (apart from 8 °C, where Carnobacterium dominated) and Aegean Sea, respectively. In addition, small changes of storage temperature greatly affected bacterial microbiota of stored fish. Various bacterial species, not detected by conventional microbiological methods, were also revealed through 16S amplicon sequencing. In conclusion, the use of NGS approach is a promising methodology for assessing bacterial diversity of sea bream originating from different geographical areas and stored at various temperatures.

Concepts: DNA, Archaea, Bacteria, Microbiology, Ribosomal RNA, 16S ribosomal RNA, Aquaculture, Gilt-head bream

0

The present study was investigating the clinical pictures, prevalence, as well as the ecological conditions associated with Pseudomonas anguilliseptica outbreaks in four cultured seabream (Sparus aurata) farms at different localities in Egypt during the winter season of 2016. The phenotypic and genotypic patterns of pseudomonas isolates were investigated. The existence of intraspecific heterogeneity among different isolates was analyzed using Restriction fragment length polymorphism (RFLP) technique. Attempts on disease control using antibiogram or dietary supplement were also considered. To achieve these goals, various commercial antibiotic discs were analyzed against Ps. anguilliseptica isolates using the disc diffusion method. Additionally, the impact of one-month dietary incorporation with 3% garlic extract or 0.5% potassium diformate on (S. aurata) viability and response for prolonged bathing treatment with florfenicol was evaluated following challenge with virulent strain of Ps. anguilliseptica. Most of the naturally infected fish displayed spiral-swimming behavior with no obvious external lesions. The prevalence of infections in the four investigated farms (F1, F2, F3, and F4) were 44.9, 69.04, 67.72, and 83.4%, respectively. Water analysis revealed a significant variation in total hardness, pH, dissolved oxygen (D.O), ammonia and salinity among different localities. All isolates were rather uniform in most of the biochemical characteristics and were identical on the basis of RFLP analysis. The analyses of PAF-PAR gene pointed out specific amplification bands of 439 bp length. The antibiogram revealed a potential activity of florofenicol, ciprofloxacin, nitrofurantoin, and oxytetracycline against all isolates. Experimentally challenged fish fed on garlic extract or potassium diformate presented lower mortality and better therapeutic response to florfenicol than those fed on a normal basal diet. In conclusion, Ps. anguilliseptica is a prevalent pathogen among cultured seabream where dietary inclusion of 3% garlic extract or 0.5% potassium diformate seemed to improve seabream health status and subsequently, increase the efficacy of the treatment with the selective antibiotic.

Concepts: Gene, Disease, Bacteria, Garlic, Prevalence, Restriction fragment length polymorphism, Gilt-head bream, Sparidae

0

The widespread use of pharmaceuticals has caused a growing concern on the presence of pharmaceuticals such as the antibiotic ciprofloxacin (CIPRO) in the aquatic environment, since they may exert adverse effects on non-target organisms, including fish. In order to study the uptake, distribution in different tissues (liver, muscle, brain and gill) and biofluids (plasma and bile), metabolism and elimination of CIPRO in gilt-head bream (Sparus aurata), controlled dosing experiments for 8 days at 200 μg/L concentration were carried out. CIPRO was only observed in bile at concentration up to 315 ± 4 ng/mL, probably due to its low octanol-water partition coefficient (log P = -2.4 at pH 7.4) and the zwitterionic behavior (pKa1 = 5.76 and pKa2 = 8.68). CIPRO by-products (BPs) were also identified in seawater environment, both in presence and absence of fish. The analysis done by means of liquid chromatography-high resolution mass spectrometry (hybrid quadrupole-Orbitrap) permitted the annotation of up to 35 BPs of CIPRO in seawater and bile, from which 30 structures were reported for the first time. These results confirm that CIPRO is very susceptible to photolysis, and that it goes through various phase I and phase II metabolisms in the fish. All these results suggested that, for a complete characterization of CIPRO exposure, BPs should also be included in the biomonitoring campaigns since they might also be toxicologically relevant.

Concepts: Metabolism, Mass spectrometry, Ciprofloxacin, Quinolone, Gilt-head bream, Sparidae, Sparus, Algarve