SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Gerontology

437

Antiaging therapies show promise in model organism research. Translation to humans is needed to address the challenges of an aging global population. Interventions to slow human aging will need to be applied to still-young individuals. However, most human aging research examines older adults, many with chronic disease. As a result, little is known about aging in young humans. We studied aging in 954 young humans, the Dunedin Study birth cohort, tracking multiple biomarkers across three time points spanning their third and fourth decades of life. We developed and validated two methods by which aging can be measured in young adults, one cross-sectional and one longitudinal. Our longitudinal measure allows quantification of the pace of coordinated physiological deterioration across multiple organ systems (e.g., pulmonary, periodontal, cardiovascular, renal, hepatic, and immune function). We applied these methods to assess biological aging in young humans who had not yet developed age-related diseases. Young individuals of the same chronological age varied in their “biological aging” (declining integrity of multiple organ systems). Already, before midlife, individuals who were aging more rapidly were less physically able, showed cognitive decline and brain aging, self-reported worse health, and looked older. Measured biological aging in young adults can be used to identify causes of aging and evaluate rejuvenation therapies.

Concepts: Population, Medicine, Senescence, Ageing, Death, Biology, Gerontology, Aging

358

Knee osteoarthritis (OA) is believed to be highly prevalent today because of recent increases in life expectancy and body mass index (BMI), but this assumption has not been tested using long-term historical or evolutionary data. We analyzed long-term trends in knee OA prevalence in the United States using cadaver-derived skeletons of people aged ≥50 y whose BMI at death was documented and who lived during the early industrial era (1800s to early 1900s; n = 1,581) and the modern postindustrial era (late 1900s to early 2000s; n = 819). Knee OA among individuals estimated to be ≥50 y old was also assessed in archeologically derived skeletons of prehistoric hunter-gatherers and early farmers (6000-300 B.P.; n = 176). OA was diagnosed based on the presence of eburnation (polish from bone-on-bone contact). Overall, knee OA prevalence was found to be 16% among the postindustrial sample but only 6% and 8% among the early industrial and prehistoric samples, respectively. After controlling for age, BMI, and other variables, knee OA prevalence was 2.1-fold higher (95% confidence interval, 1.5-3.1) in the postindustrial sample than in the early industrial sample. Our results indicate that increases in longevity and BMI are insufficient to explain the approximate doubling of knee OA prevalence that has occurred in the United States since the mid-20th century. Knee OA is thus more preventable than is commonly assumed, but prevention will require research on additional independent risk factors that either arose or have become amplified in the postindustrial era.

Concepts: Gerontology, Medical statistics, Industrial Revolution, Life expectancy, United Kingdom, Osteoarthritis, United States, Body mass index

253

We developed a new statistical framework to find genetic variants associated with extreme longevity. The method, informed GWAS (iGWAS), takes advantage of knowledge from large studies of age-related disease in order to narrow the search for SNPs associated with longevity. To gain support for our approach, we first show there is an overlap between loci involved in disease and loci associated with extreme longevity. These results indicate that several disease variants may be depleted in centenarians versus the general population. Next, we used iGWAS to harness information from 14 meta-analyses of disease and trait GWAS to identify longevity loci in two studies of long-lived humans. In a standard GWAS analysis, only one locus in these studies is significant (APOE/TOMM40) when controlling the false discovery rate (FDR) at 10%. With iGWAS, we identify eight genetic loci to associate significantly with exceptional human longevity at FDR < 10%. We followed up the eight lead SNPs in independent cohorts, and found replication evidence of four loci and suggestive evidence for one more with exceptional longevity. The loci that replicated (FDR < 5%) included APOE/TOMM40 (associated with Alzheimer's disease), CDKN2B/ANRIL (implicated in the regulation of cellular senescence), ABO (tags the O blood group), and SH2B3/ATXN2 (a signaling gene that extends lifespan in Drosophila and a gene involved in neurological disease). Our results implicate new loci in longevity and reveal a genetic overlap between longevity and age-related diseases and traits, including coronary artery disease and Alzheimer's disease. iGWAS provides a new analytical strategy for uncovering SNPs that influence extreme longevity, and can be applied more broadly to boost power in other studies of complex phenotypes.

Concepts: Alzheimer's disease, Atherosclerosis, Gene, Cancer, Coronary artery disease, Senescence, Gerontology, Aging-associated diseases

228

Retirement constitutes a major life transition that poses significant challenges to health, with many retirees experiencing a precipitous decline in health status following retirement. We examine the extent to which membership in social groups following retirement determines quality of life and mortality.

Concepts: Old age, Demography, Ageing, Death, Gerontology, Epidemiology, Longitudinal study, Life

198

Aging is the main risk factor for Alzheimer’s disease (AD); however, the aspects of the aging process that predispose the brain to the development of AD are largely unknown. Astrocytes perform a myriad of functions in the central nervous system to maintain homeostasis and support neuronal function. In vitro, human astrocytes are highly sensitive to oxidative stress and trigger a senescence program when faced with multiple types of stress. In order to determine whether senescent astrocytes appear in vivo, brain tissue from aged individuals and patients with AD was examined for the presence of senescent astrocytes using p16(INK4a) and matrix metalloproteinase-1 (MMP-1) expression as markers of senescence. Compared with fetal tissue samples (n = 4), a significant increase in p16(INK4a)-positive astrocytes was observed in subjects aged 35 to 50 years (n = 6; P = 0.02) and 78 to 90 years (n = 11; P<10(-6)). In addition, the frontal cortex of AD patients (n = 15) harbored a significantly greater burden of p16(INK4a)-positive astrocytes compared with non-AD adult control subjects of similar ages (n = 25; P = 0.02) and fetal controls (n = 4; P<10(-7)). Consistent with the senescent nature of the p16(INK4a)-positive astrocytes, increased metalloproteinase MMP-1 correlated with p16(INK4a). In vitro, beta-amyloid 1-42 (Aβ(1-42)) triggered senescence, driving the expression of p16(INK4a) and senescence-associated beta-galactosidase. In addition, we found that senescent astrocytes produce a number of inflammatory cytokines including interleukin-6 (IL-6), which seems to be regulated by p38MAPK. We propose that an accumulation of p16(INK4a)-positive senescent astrocytes may link increased age and increased risk for sporadic AD.

Concepts: Central nervous system, Death, Gerontology, Ageing, Neuron, Brain, Senescence, Nervous system

179

Cathie Sudlow and colleagues describe the UK Biobank, a large population-based prospective study, established to allow investigation of the genetic and non-genetic determinants of the diseases of middle and old age.

Concepts: United Kingdom, Europe, Retirement, Ageing, Genetic disorder, Old age, Gerontology, Death

178

The reproductive-cell cycle theory of aging posits that reproductive hormone changes associated with menopause and andropause drive senescence via altered cell cycle signaling. Using data from the Wisconsin Longitudinal Study (n = 5,034), we analyzed the relationship between longevity and menopause, including other factors that impact “ovarian lifespan” such as births, oophorectomy, and hormone replacement therapy. We found that later onset of menopause was associated with lower mortality, with and without adjusting for additional factors (years of education, smoking status, body mass index, and marital status). Each year of delayed menopause resulted in a 2.9% reduction in mortality; after including a number of additional controls, the effect was attenuated modestly but remained statistically significant (2.6% reduction in mortality). We also found that no other reproductive parameters assessed added to the prediction of longevity, suggesting that reproductive factors shown to affect longevity elsewhere may be mediated by age of menopause. Thus, surgical and natural menopause at age 40, for example, resulted in identical survival probabilities. These results support the maintenance of the hypothalamic-pituitary-gonadal axis in homeostasis in prolonging human longevity, which provides a coherent framework for understanding the relationship between reproduction and longevity.

Concepts: Oophorectomy, Life expectancy, Gerontology, Organism, Hormone, Senescence, Ageing, Menopause

177

Consistent daily rhythms are important to healthy aging according to studies linking disrupted circadian rhythms with negative health impacts. We studied the effects of age and exercise on baseline circadian rhythms and on the circadian system’s ability to respond to the perturbation induced by an 8 h advance of the light:dark (LD) cycle as a test of the system’s robustness. Mice (male, mPer2(luc)/C57BL/6) were studied at one of two ages: 3.5 months (n = 39) and >18 months (n = 72). We examined activity records of these mice under entrained and shifted conditions as well as mPER2::LUC measures ex vivo to assess circadian function in the suprachiasmatic nuclei (SCN) and important target organs. Age was associated with reduced running wheel use, fragmentation of activity, and slowed resetting in both behavioral and molecular measures. Furthermore, we observed that for aged mice, the presence of a running wheel altered the amplitude of the spontaneous firing rate rhythm in the SCN in vitro. Following a shift of the LD cycle, both young and aged mice showed a change in rhythmicity properties of the mPER2::LUC oscillation of the SCN in vitro, and aged mice exhibited longer lasting internal desynchrony. Access to a running wheel alleviated some age-related changes in the circadian system. In an additional experiment, we replicated the effect of the running wheel, comparing behavioral and in vitro results from aged mice housed with or without a running wheel (>21 months, n = 8 per group, all examined 4 days after the shift). The impact of voluntary exercise on circadian rhythm properties in an aged animal is a novel finding and has implications for the health of older people living with environmentally induced circadian disruption.

Concepts: Chronobiology, Gerontology, Ageing, Circadian rhythms, Circadian rhythm

167

BACKGROUND: The ability to drive is important for ensuring quality of life for many older adults. Glaucoma is prevalent in this age group and may affect driving. The purpose of this study is to determine if glaucoma and glaucomatous visual field (VF) loss are associated with driving cessation, limitations, and deference to another driver in older adults. METHODS: Cross-sectional study. Eighty-one glaucoma subjects and 58 glaucoma suspect controls between age 60 and 80 reported if they had ceased driving, limited their driving in various ways, or preferred another to drive. RESULTS: Twenty-three percent of glaucoma subjects and 6.9% of suspects had ceased driving (p = 0.01). Glaucoma subjects also had more driving limitations than suspects (2.0 vs. 1.1, p = 0.007). In multivariable models, driving cessation was more likely for glaucoma subjects as compared to suspects (OR = 4.0; 95% CI = 1.1-14.7; p = 0.03). The odds of driving cessation doubled with each 5 decibel (dB) decrement in the better-eye VF mean deviation (MD) (OR = 2.0; 95% CI = 1.4-2.9; p < 0.001). Glaucoma subjects were also more likely than suspects to report a greater number of driving limitations (OR = 4.7; 95% CI = 1.3-16.8; p = 0.02). The likelihood of reporting more limitations increased with the VF loss severity (OR = 1.6/5 dB decrement in the better-eye VF MD; 95% CI = 1.1-2.4; p = 0.02). Neither glaucoma nor VF MD was associated with other driver preference (p > 0.1 for both). CONCLUSIONS: Glaucoma and glaucomatous VF loss are associated with greater likelihood of driving cessation and greater limitation of driving in the elderly. Further prospective study is merited to assess when and why people with glaucoma change their driving habits, and to determine if their observed self-regulation of driving is adequate to ensure safety.

Concepts: Preference, Absolute deviation, Suspect, Median, Ageing, Gerontology, Middle age, Old age

167

Arsenic in drinking water was associated with increased risk of all-cause, cancer, and cardiovascular death in adults. However, the extent to which exposure is related to all-cause and deaths from cancer and cardiovascular condition in young age is unknown. Therefore, we prospectively assessed whether long-term and recent arsenic exposures are associated with all-cause and cancer and cardiovascular mortalities in Bangladeshi childhood population.

Concepts: Actuarial science, Ageing, Gerontology, Epidemiology, Cohort study, Death, Senescence, Demography