Discover the most talked about and latest scientific content & concepts.

Concept: Geomorphology


Here we show that constructal-law physics unifies the design of animate and inanimate movement by requiring that larger bodies move farther, and their movement on the landscape last longer. The life span of mammals must scale as the body mass (M) raised to the power ¼, and the distance traveled during the lifetime must increase with body size. The same size effect on life span and distance traveled holds for the other flows that move mass on earth: atmospheric and oceanic jets and plumes, river basins, animals and human operated vehicles. The physics is the same for all flow systems on the landscape: the scaling rules of “design” are expressions of the natural tendency of all flow systems to generate designs that facilitate flow access. This natural tendency is the constructal law of design and evolution in nature. Larger bodies are more efficient movers of mass on the landscape.

Concepts: Evolution, Life, Physics, Mass, Force, Effect size, Nature, Geomorphology


Martian habitats are ideally constructed using only locally available soils; extant attempts to process structural materials on Mars, however, generally require additives or calcination. In this work we demonstrate that Martian soil simulant Mars-1a can be directly compressed at ambient into a strong solid without additives, highlighting a possible aspect of complete Martian in-situ resource utilization. Flexural strength of the compact is not only determined by the compaction pressure but also significantly influenced by the lateral boundary condition of processing loading. The compression loading can be applied either quasi-statically or through impact. Nanoparticulate iron oxide (npOx), commonly detected in Martian regolith, is identified as the bonding agent. Gas permeability of compacted samples was measured to be on the order of 10(-16) m(2), close to that of solid rocks. The compaction procedure is adaptive to additive manufacturing.

Concepts: Oxygen, Soil, Mars, Geology, Compact space, Regolith, Geomorphology, In-situ resource utilization


In order to reduce soil erosion and desertification, the Sloping Land Conversion Program has been conducted in China for more than 15 years, and large areas of farmland have been converted to forest and grassland. However, this large-scale vegetation-restoration project has faced some key problems (e.g. soil drying) that have limited the successful development of the current ecological-recovery policy. Therefore, it is necessary to know about the land use, vegetation, and soil, and their inter-relationships in order to identify the suitability of vegetation restoration. This study was conducted at the watershed level in the ecologically vulnerable region of the Loess Plateau, to evaluate the land suitability using the analytic hierarchy process (AHP). The results showed that (1) the area unsuitable for crops accounted for 73.3% of the watershed, and the main factors restricting cropland development were soil physical properties and soil nutrients; (2) the area suitable for grassland was about 86.7% of the watershed, with the remaining 13.3% being unsuitable; (3) an area of 3.95 km(2), accounting for 66.7% of the watershed, was unsuitable for forest. Overall, the grassland was found to be the most suitable land-use to support the aims of the Sloping Land Conversion Program in the Liudaogou watershed. Under the constraints of soil water shortage and nutrient deficits, crops and forests were considered to be inappropriate land uses in the study area, especially on sloping land. When selecting species for re-vegetation, non-native grass species with high water requirements should be avoided so as to guarantee the sustainable development of grassland and effective ecological functioning. Our study provides local land managers and farmers with valuable information about the inappropriateness of growing trees in the study area along with some information on species selection for planting in the semi-arid area of the Loess Plateau.

Concepts: Nutrient, Soil, Erosion, Analytic Hierarchy Process, Analytical hierarchy, Land use, Geomorphology, Deforestation


Weathering on mountain slopes converts rock to sediment that erodes into channels and thus provides streams with tools for incision into bedrock. Both the size and flux of sediment from slopes can influence channel incision, making sediment production and erosion central to the interplay of climate and tectonics in landscape evolution. Although erosion rates are commonly measured using cosmogenic nuclides, there has been no complementary way to quantify how sediment size varies across slopes where the sediment is produced. Here we show how this limitation can be overcome using a combination of apatite helium ages and cosmogenic nuclides measured in multiple sizes of stream sediment. We applied the approach to a catchment underlain by granodiorite bedrock on the eastern flanks of the High Sierra, in California. Our results show that higher-elevation slopes, which are steeper, colder, and less vegetated, are producing coarser sediment that erodes faster into the channel network. This suggests that both the size and flux of sediment from slopes to channels are governed by altitudinal variations in climate, vegetation, and topography across the catchment. By quantifying spatial variations in the sizes of sediment produced by weathering, this analysis enables new understanding of sediment supply in feedbacks between climate, tectonics, and mountain landscape evolution.

Concepts: Earth, Sediment, Climate change, Erosion, Stream, Vegetation, Road, Geomorphology


The multitemporal behavior of soil loss by surface water erosion in the hydrographic basin of the river Mourão in the center-western region of the Paraná state, Brazil, is analyzed. Forecast was based on the application of the Universal Soil Loss Equation (USLE) with the data integration and estimates within an Geography Information System (GIS) environment. Results had shown high mean annual rain erosivity (10,000, with great concentration in January and December. As a rule, soils have average erodibilities, exception of Dystroferric Red Latisol (low class) and Dystrophic Red Argisol (high class). Although the topographic factor was high (>20), rates lower than 1 were predominant. Main land uses comprise temporal crops and pasture throughout the years. The watershed showed a natural potential for low surface erosion. When related to usage types, yearly soil loss was also low (<50 ton.ha-1.year-1), with more critical scores that reach rates higher than 150 ton.ha-1.year-1. Soil loss over the years did not provide great distinctions in distribution standards, although it becames rather intensified in some sectors, especially in the center-eastern and southwestern sections of the watershed.

Concepts: Water, Geographic information system, Soil, Erosion, Surface runoff, Geomorphology, Weathering, Universal Soil Loss Equation


Longitudinal connectivity is a fundamental characteristic of rivers that can be disrupted by natural and anthropogenic processes. Dams are significant disruptions to streams. Over 2,000,000 low-head dams (<7.6 m high) fragment United States rivers. Despite potential adverse impacts of these ubiquitous disturbances, the spatial impacts of low-head dams on geomorphology and ecology are largely untested. Progress for research and conservation is impaired by not knowing the magnitude of low-head dam impacts. Based on the geomorphic literature, we refined a methodology that allowed us to quantify the spatial extent of low-head dam impacts (herein dam footprint), assessed variation in dam footprints across low-head dams within a river network, and identified select aspects of the context of this variation. Wetted width, depth, and substrate size distributions upstream and downstream of six low-head dams within the Upper Neosho River, Kansas, United States of America were measured. Total dam footprints averaged 7.9 km (3.0-15.3 km) or 287 wetted widths (136-437 wetted widths). Estimates included both upstream (mean: 6.7 km or 243 wetted widths) and downstream footprints (mean: 1.2 km or 44 wetted widths). Altogether the six low-head dams impacted 47.3 km (about 17%) of the mainstem in the river network. Despite differences in age, size, location, and primary function, the sizes of geomorphic footprints of individual low-head dams in the Upper Neosho river network were relatively similar. The number of upstream dams and distance to upstream dams, but not dam height, affected the spatial extent of dam footprints. In summary, ubiquitous low-head dams individually and cumulatively altered lotic ecosystems. Both characteristics of individual dams and the context of neighboring dams affected low-head dam impacts within the river network. For these reasons, low-head dams require a different, more integrative, approach for research and management than the individualistic approach that has been applied to larger dams.

Concepts: United States, River, Individualism, Dam, Flood, Geomorphology, Sediment transport, Levee


In the Loess Plateau, soil erosion has not only caused serious ecological and environmental problems but has also impacted downstream areas. Therefore, a model is needed to guide the comprehensive control of soil erosion. In this study, we introduced the WEPP model to simulate soil erosion both at the slope and watershed scales. Our analyses showed that: the simulated values at the slope scale were very close to the measured. However, both the runoff and soil erosion simulated values at the watershed scale were higher than the measured. At the slope scale, under different coverage, the simulated erosion was slightly higher than the measured. When the coverage is 40%, the simulated results of both runoff and erosion are the best. At the watershed scale, the actual annual runoff of the Liudaogou watershed is 83m3; sediment content is 0.097 t/m3, annual erosion sediment 8.057t and erosion intensity 0.288 t ha-1 yr-1. Both the simulated values of soil erosion and runoff are higher than the measured, especially the runoff. But the simulated erosion trend is relatively accurate after the farmland is returned to grassland. We concluded that the WEPP model can be used to establish a reasonable vegetation restoration model and guide the vegetation restoration of the Loess Plateau.

Concepts: Sediment, Soil, Erosion, Silt, Surface runoff, Geomorphology, Loess Plateau, Deforestation


Deciphering erosion rates over geologic time is fundamental for understanding the interplay between climate, tectonic, and erosional processes. Existing techniques integrate erosion over different time scales, and direct comparison of such rates is routinely done in earth science. On the basis of a global compilation, we show that erosion rate estimates in glaciated landscapes may be affected by a systematic averaging bias that produces higher estimated erosion rates toward the present, which do not reflect straightforward changes in erosion rates through time. This trend can result from a heavy-tailed distribution of erosional hiatuses (that is, time periods where no or relatively slow erosion occurs). We argue that such a distribution can result from the intermittency of erosional processes in glaciated landscapes that are tightly coupled to climate variability from decadal to millennial time scales. In contrast, we find no evidence for a time scale bias in spatially averaged erosion rates of landscapes dominated by river incision. We discuss the implications of our findings in the context of the proposed coupling between climate and tectonics, and interpreting erosion rate estimates with different averaging time scales through geologic time.

Concepts: Present, Time, Earth, Glacier, Erosion, Geomorphology, Geologic time scale, Palynology


This research investigated how the strength of vegetation-soil-topography couplings varied along a gradient of biogeomorphic succession in two distinct fluvial systems: a forested river floodplain and a coastal salt marsh creek. The strength of couplings was quantified as tri-variance, which was calculated by correlating three singular axes, one each extracted using three-block partial least squares from vegetation, soil, and topography data blocks. Within each system, tri-variance was examined at low-, mid-, and high-elevation sites, which represented early-, intermediate-, and late-successional phases, respectively, and corresponded to differences in ongoing disturbance frequency and intensity. Both systems exhibited clearly increasing tri-variance from the early- to late-successional stages. The lowest-lying sites underwent frequent and intense hydrogeomorphic forcings that dynamically reworked soil substrates, restructured surface landforms, and controlled the colonization of plant species. Such conditions led vegetation, soil, and topography to show discrete, stochastic, and individualistic behaviors over space and time, resulting in a loose coupling among the three ecosystem components. In the highest-elevation sites, in contrast, disturbances that might disrupt the existing biotic-abiotic relationships were less common. Hence, ecological succession, soil-forming processes, and landform evolution occurred in tight conjunction with one another over a prolonged period, thereby strengthening couplings among them; namely, the three behaved in unity over space and time. We propose that the recurrence interval of physical disturbance is important to-and potentially serves as an indicator of-the intensity and mechanisms of vegetation-soil-topography feedbacks in fluvial biogeomorphic systems.

Concepts: Time, Ecology, Gradient, Ecosystem, Partial derivative, Ecological succession, Geomorphology, Landform


Subaerial endolithic systems of the current extreme environments on Earth provide exclusive insight into emergence and development of soils in the Precambrian when due to various stresses on the surfaces of hard rocks the cryptic niches inside them were much more plausible habitats for organisms than epilithic ones. Using an actualistic approach we demonstrate that transformation of silicate rocks by endolithic organisms is one of the possible pathways for the beginning of soils on Earth. This process led to the formation of soil-like bodies on rocks in situ and contributed to the raise of complexity in subaerial geosystems. Endolithic systems of East Antarctica lack the noise from vascular plants and are among the best available natural models to explore organo-mineral interactions of a very old “phylogenetic age” (cyanobacteria-to-mineral, fungi-to-mineral, lichen-to-mineral). On the basis of our case study from East Antarctica we demonstrate that relatively simple endolithic systems of microbial and/or cryptogamic origin that exist and replicate on Earth over geological time scales employ the principles of organic matter stabilization strikingly similar to those known for modern full-scale soils of various climates.

Concepts: Plant, Earth, Soil, Geology, Complex system, Organic matter, Geomorphology, Geologic time scale