SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Genetics

399

DNA methylation plays a critical role in the regulation and maintenance of cell-type specific transcriptional programs. Targeted epigenome editing is an emerging technology to specifically regulate cellular gene expression in order to modulate cell phenotypes or dissect the epigenetic mechanisms involved in their control. In this work, we employed a DNA methyltransferase Dnmt3a-Dnmt3L construct fused to the nuclease-inactivated dCas9 programmable targeting domain to introduce DNA methylation into the human genome specifically at the EpCAM, CXCR4 and TFRC gene promoters. We show that targeting of these loci with single gRNAs leads to efficient and widespread methylation of the promoters. Multiplexing of several guide RNAs does not increase the efficiency of methylation. Peaks of targeted methylation were observed around 25 bp upstream and 40 bp downstream of the PAM site, while 20-30 bp of the binding site itself are protected against methylation. Potent methylation is dependent on the multimerization of Dnmt3a/Dnmt3L complexes on the DNA. Furthermore, the introduced methylation causes transcriptional repression of the targeted genes. These new programmable epigenetic editors allow unprecedented control of the DNA methylation status in cells and will lead to further advances in the understanding of epigenetic signaling.

Concepts: Epigenetics, Transcription, Protein, DNA methylation, Genetics, Gene expression, Gene, DNA

393

Neoplasms occur naturally in invertebrates but are not known to develop in tapeworms. We observed nests of monomorphic, undifferentiated cells in samples from lymph-node and lung biopsies in a man infected with the human immunodeficiency virus (HIV). The morphologic features and invasive behavior of the cells were characteristic of cancer, but their small size suggested a nonhuman origin. A polymerase-chain-reaction (PCR) assay targeting eukaryotes identified Hymenolepis nana DNA. Although the cells were unrecognizable as tapeworm tissue, immunohistochemical staining and probe hybridization labeled the cells in situ. Comparative deep sequencing identified H. nana structural genomic variants that are compatible with mutations described in cancer. Invasion of human tissue by abnormal, proliferating, genetically altered tapeworm cells is a novel disease mechanism that links infection and cancer.

Concepts: Genetics, Immune system, Genome, Histology, Gene, Infectious disease, DNA, Cancer

390

Female mosquitoes display preferences for certain individuals over others, which is determined by differences in volatile chemicals produced by the human body and detected by mosquitoes. Body odour can be controlled genetically but the existence of a genetic basis for differential attraction to insects has never been formally demonstrated. This study investigated heritability of attractiveness to mosquitoes by evaluating the response of Aedes aegypti (=Stegomyia aegypti) mosquitoes to odours from the hands of identical and non-identical twins in a dual-choice assay. Volatiles from individuals in an identical twin pair showed a high correlation in attractiveness to mosquitoes, while non-identical twin pairs showed a significantly lower correlation. Overall, there was a strong narrow-sense heritability of 0.62 (SE 0.124) for relative attraction and 0.67 (0.354) for flight activity based on the average of ten measurements. The results demonstrate an underlying genetic component detectable by mosquitoes through olfaction. Understanding the genetic basis for attractiveness could create a more informed approach to repellent development.

Concepts: Body odor, Human body, Genetics, Twin, Aedes aegypti, Aedes, Odor, Mosquito

387

A recent slew of ENCODE Consortium publications, specifically the article signed by all Consortium members, put forward the idea that more than 80% of the human genome is functional. This claim flies in the face of current estimates according to which the fraction of the genome that is evolutionarily conserved through purifying selection is under 10%. Thus, according to the ENCODE Consortium, a biological function can be maintained indefinitely without selection, which implies that at least 80 - 10 = 70% of the genome is perfectly invulnerable to deleterious mutations, either because no mutation can ever occur in these “functional” regions, or because no mutation in these regions can ever be deleterious. This absurd conclusion was reached through various means, chiefly (1) by employing the seldom used “causal role” definition of biological function and then applying it inconsistently to different biochemical properties, (2) by committing a logical fallacy known as “affirming the consequent,” (3) by failing to appreciate the crucial difference between “junk DNA” and “garbage DNA,” (4) by using analytical methods that yield biased errors and inflate estimates of functionality, (5) by favoring statistical sensitivity over specificity, and (6) by emphasizing statistical significance rather than the magnitude of the effect. Here, we detail the many logical and methodological transgressions involved in assigning functionality to almost every nucleotide in the human genome. The ENCODE results were predicted by one of its authors to necessitate the rewriting of textbooks. We agree, many textbooks dealing with marketing, mass-media hype, and public relations may well have to be rewritten.

Concepts: Mutation, Junk DNA, Human Genome Project, Natural selection, Human genome, Gene, Genetics, DNA

373

 To assess the impact of communicating DNA based disease risk estimates on risk-reducing health behaviours and motivation to engage in such behaviours.

Concepts: Risk, Genetics, Motivation, Epidemiology, Behavior, Medicine, Human behavior, Educational psychology

346

To identify molecular mechanisms underlying the prospective health advantages associated with psychological well-being, we analyzed leukocyte basal gene expression profiles in 80 healthy adults who were assessed for hedonic and eudaimonic well-being, as well as potentially confounded negative psychological and behavioral factors. Hedonic and eudaimonic well-being showed similar affective correlates but highly divergent transcriptome profiles. Peripheral blood mononuclear cells from people with high levels of hedonic well-being showed up-regulated expression of a stress-related conserved transcriptional response to adversity (CTRA) involving increased expression of proinflammatory genes and decreased expression of genes involved in antibody synthesis and type I IFN response. In contrast, high levels of eudaimonic well-being were associated with CTRA down-regulation. Promoter-based bioinformatics implicated distinct patterns of transcription factor activity in structuring the observed differences in gene expression associated with eudaimonic well-being (reduced NF-κB and AP-1 signaling and increased IRF and STAT signaling). Transcript origin analysis identified monocytes, plasmacytoid dendritic cells, and B lymphocytes as primary cellular mediators of these dynamics. The finding that hedonic and eudaimonic well-being engage distinct gene regulatory programs despite their similar effects on total well-being and depressive symptoms implies that the human genome may be more sensitive to qualitative variations in well-being than are our conscious affective experiences.

Concepts: Protein, Immune system, Transcription factor, Transcription, Gene expression, Genetics, Gene, DNA

332

We report on the sequencing of 10,545 human genomes at 30×-40× coverage with an emphasis on quality metrics and novel variant and sequence discovery. We find that 84% of an individual human genome can be sequenced confidently. This high-confidence region includes 91.5% of exon sequence and 95.2% of known pathogenic variant positions. We present the distribution of over 150 million single-nucleotide variants in the coding and noncoding genome. Each newly sequenced genome contributes an average of 8,579 novel variants. In addition, each genome carries on average 0.7 Mb of sequence that is not found in the main build of the hg38 reference genome. The density of this catalog of variation allowed us to construct high-resolution profiles that define genomic sites that are highly intolerant of genetic variation. These results indicate that the data generated by deep genome sequencing is of the quality necessary for clinical use.

Concepts: Sequence, Genome, Human Genome Project, Human genome, Genetics, Gene, Genomics, DNA

324

Induction of broadly neutralizing antibodies (bnAbs) is a primary goal of HIV vaccine development. VRC01-class bnAbs are important vaccine leads because their precursor B cells targeted by an engineered priming immunogen are relatively common among humans. This priming immunogen has demonstrated the ability to initiate a bnAb response in animal models, but recall and maturation toward bnAb development has not been shown. Here, we report the development of boosting immunogens designed to guide the genetic and functional maturation of previously primed VRC01-class precursors. Boosting a transgenic mouse model expressing germline VRC01 heavy chains produced broad neutralization of near-native isolates (N276A) and weak neutralization of fully native HIV. Functional and genetic characteristics indicate that the boosted mAbs are consistent with partially mature VRC01-class antibodies and place them on a maturation trajectory that leads toward mature VRC01-class bnAbs. The results show how reductionist sequential immunization can guide maturation of HIV bnAb responses.

Concepts: Bacteria, Developmental biology, Gene expression, Vaccine, Antibody, Genetics, Antigen, Immune system

324

We employed an RNA-guided CRISPR/Cas9 DNA editing system to precisely remove the entire HIV-1 genome spanning between 5' and 3' LTRs of integrated HIV-1 proviral DNA copies from latently infected human CD4+ T-cells. Comprehensive assessment of whole-genome sequencing of HIV-1 eradicated cells ruled out any off-target effects by our CRISPR/Cas9 technology that might compromise the integrity of the host genome and further showed no effect on several cell health indices including viability, cell cycle and apoptosis. Persistent co-expression of Cas9 and the specific targeting guide RNAs in HIV-1-eradicated T-cells protected them against new infection by HIV-1. Lentivirus-delivered CRISPR/Cas9 significantly diminished HIV-1 replication in infected primary CD4+ T-cell cultures and drastically reduced viral load in ex vivo culture of CD4+ T-cells obtained from HIV-1 infected patients. Thus, gene editing using CRISPR/Cas9 may provide a new therapeutic path for eliminating HIV-1 DNA from CD4+ T-cells and potentially serve as a novel and effective platform toward curing AIDS.

Concepts: Organism, Chromosome, Genetics, Bacteria, Virus, DNA, Cell nucleus, Gene

321

Human identification from biological material is largely dependent on the ability to characterize genetic polymorphisms in DNA. Unfortunately, DNA can degrade in the environment, sometimes below the level at which it can be amplified by PCR. Protein however is chemically more robust than DNA and can persist for longer periods. Protein also contains genetic variation in the form of single amino acid polymorphisms. These can be used to infer the status of non-synonymous single nucleotide polymorphism alleles. To demonstrate this, we used mass spectrometry-based shotgun proteomics to characterize hair shaft proteins in 66 European-American subjects. A total of 596 single nucleotide polymorphism alleles were correctly imputed in 32 loci from 22 genes of subjects' DNA and directly validated using Sanger sequencing. Estimates of the probability of resulting individual non-synonymous single nucleotide polymorphism allelic profiles in the European population, using the product rule, resulted in a maximum power of discrimination of 1 in 12,500. Imputed non-synonymous single nucleotide polymorphism profiles from European-American subjects were considerably less frequent in the African population (maximum likelihood ratio = 11,000). The converse was true for hair shafts collected from an additional 10 subjects with African ancestry, where some profiles were more frequent in the African population. Genetically variant peptides were also identified in hair shaft datasets from six archaeological skeletal remains (up to 260 years old). This study demonstrates that quantifiable measures of identity discrimination and biogeographic background can be obtained from detecting genetically variant peptides in hair shaft protein, including hair from bioarchaeological contexts.

Concepts: Biology, Allele, Molecular biology, Bioinformatics, Genetics, DNA, Protein, Gene