SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Genetic engineering

170

Fully drought-resistant crop plants would be beneficial, but selection breeding has not produced them. Genetic modification of species by introduction of very many genes is claimed, predominantly, to have given drought resistance. This review analyses the physiological responses of genetically modified (GM) plants to water deficits, the mechanisms, and the consequences. The GM literature neglects physiology and is unspecific in definitions, which are considered here, together with methods of assessment and the type of drought resistance resulting. Experiments in soil with cessation of watering demonstrate drought resistance in GM plants as later stress development than in wild-type (WT) plants. This is caused by slower total water loss from the GM plants which have (or may have-morphology is often poorly defined) smaller total leaf area (LA) and/or decreased stomatal conductance (g(s)), associated with thicker laminae (denser mesophyll and smaller cells). Non-linear soil water characteristics result in extreme stress symptoms in WT before GM plants. Then, WT and GM plants are rewatered: faster and better recovery of GM plants is taken to show their greater drought resistance. Mechanisms targeted in genetic modification are then, incorrectly, considered responsible for the drought resistance. However, this is not valid as the initial conditions in WT and GM plants are not comparable. GM plants exhibit a form of ‘drought resistance’ for which the term ‘delayed stress onset’ is introduced. Claims that specific alterations to metabolism give drought resistance [for which the term ‘constitutive metabolic dehydration tolerance’ (CMDT) is suggested] are not critically demonstrated, and experimental tests are suggested. Small LA and g(s) may not decrease productivity in well-watered plants under laboratory conditions but may in the field. Optimization of GM traits to environment has not been analysed critically and is required in field trials, for example of recently released oilseed rape and maize which show ‘drought resistance’, probably due to delayed stress onset. Current evidence is that GM plants may not be better able to cope with drought than selection-bred cultivars.

Concepts: DNA, Gene, Water, Biotechnology, Francis Crick, James D. Watson, Genetically modified food, Genetic engineering

159

Multiple lines of transgenic rice expressing insecticidal genes from the bacterium Bacillus thuringiensis (Bt) have been developed in China, posing the prospect of increases in production with decreased application of pesticides. We explore the issues facing adoption of Bt rice for commercial production in China. A body of safety assessment work on Bt rice has shown that Bt rice poses a negligible risk to the environment and that Bt rice products are as safe as non-Bt control rice products as food. China has a relatively well-developed regulatory system for risk assessment and management of genetically modified (GM) plants; however, decision-making regarding approval of commercial production has become politicized, and two Bt rice lines that otherwise were ready have not been allowed to enter the Chinese agricultural system. We predict that Chinese farmers would value the prospect of increased yield with decreased use of pesticide and would readily adopt production of Bt rice. That Bt rice lines may not be commercialized in the near future we attribute to social pressures, largely due to the low level of understanding and acceptance of GM crops by Chinese consumers. Hence, enhancing communication of GM crop science-related issues to the public is an important, unmet need. While the dynamics of each issue are particular to China, they typify those in many countries where adoption of GM crops has been not been rapid; hence, the assessment of these dynamics might inform resolution of these issues in other countries.

Concepts: Bacteria, Risk, Pesticide, Bacillus thuringiensis, Genetically modified organism, Genetically modified food, Genetic engineering, Monsanto

144

The approval of genetically modified (GM) crops is preceded by years of intensive research to demonstrate safety to humans and environment. We recently showed that in vitro culture stress is the major factor influencing proteomic differences of GM vs. non-GM plants. This made us question the number of generations needed to erase such “memory”. We also wondered about the relevance of alterations promoted by transgenesis as compared to environment-induced ones. Here we followed three rice lines (1-control, 1-transgenic and 1-negative segregant) throughout eight generations after transgenesis combining proteomics and transcriptomics, and further analyzed their response to salinity stress on the F6 generation. Our results show that: (a) differences promoted during genetic modification are mainly short-term physiological changes, attenuating throughout generations, and (b) environmental stress may cause far more proteomic/transcriptomic alterations than transgenesis. Based on our data, we question what is really relevant in risk assessment design for GM food crops.

Concepts: DNA, Genetics, Genomics, Proteome, Genetically modified organism, Genetically modified food, Genetic engineering, Transgene

141

Despite the rapid adoption of genetically modified (GM) crops by farmers in many countries, controversies about this technology continue. Uncertainty about GM crop impacts is one reason for widespread public suspicion.

Concepts: Agriculture, Genetically modified organism, Crops, Genetically modified food, Genetic engineering, Crop

38

Despite the fact that a thorough, lengthy and costly evaluation of genetically engineered (GE) crop plants (including compositional analysis and toxicological tests) is imposed before marketing some European citizens remain sceptical of the safety of GE food and feed. In this context, are additional tests necessary? If so, what can we learn from them? To address these questions, we examined data from 60 recent high-throughput “-omics” comparisons between GE and non-GE crop lines and 17 recent long term animal feeding studies (longer than the classical 90-day subchronic toxicological tests), as well as 16 multigenerational studies on animals. The “-omics” comparisons revealed that the genetic modification has less impact on plant gene expression and composition than that of conventional plant breeding. Moreover, environmental factors (such as field location, sampling time, or agricultural practices) have a greater impact than transgenesis. None of these “-omics” profiling studies has raised new safety concerns about GE varieties; neither did the long-term and multigenerational studies on animals. Therefore, there is no need to perform such long term studies in a case-by-case approach, unless reasonable doubt still exists after conducting a 90-day feeding test. In addition, plant compositional analysis and “-omics” profiling do not indicate that toxicological tests should be mandatory. We discuss what complementary fundamental studies should be performed and how to choose the most efficient experimental design in order to assess risks associated with new GE traits. The possible need to update the current regulatory framework is discussed.

Concepts: DNA, Genetics, Molecular biology, Food, Term, Genetically modified food, Genetic engineering, Transgene

36

The compositional equivalency between GM crops and non-transgenic comparators has been a fundamental component of the human health safety assessment for twenty years. During this period of time, a large amount of information has been amassed on the compositional changes that accompany both the transgenesis process and traditional breeding methods; additionally the genetic mechanisms behind these changes have been elucidated. After two decades, we encourage scientists to objectively assess this body of literature and determine if sufficient scientific uncertainty still exists to continue the general requirement for these studies to support the safety assessment of transgenic crops. We conclude that suspect unintended compositional effects that could be caused by genetic modification have not materialized based on this substantial literature. Hence, compositional equivalence studies uniquely required for GM crops may no longer be justified based on scientific uncertainty.

Concepts: Time, Genetics, Health, Human, Physics, Genetically modified organism, Genetically modified food, Genetic engineering

29

Genetically engineered crops were first commercialized in 1994 and since then have been rapidly adopted, enabling growers to more effectively manage pests and increase crop productivity while ensuring food, feed, and environmental safety. The development of these crops is complex and based on rigorous science that must be well coordinated to create a plant with desired beneficial phenotypes. This article describes the general process by which a genetically engineered crop is developed from an initial concept to a commercialized product. Expected final online publication date for the Annual Review of Plant Biology Volume 65 is April 29, 2014. Please see http://www.annualreviews.org/catalog/pubdates.aspx for revised estimates.

Concepts: DNA, Agriculture, Biology, Human Genome Project, Species, Biotechnology, Chemical engineering, Genetic engineering

28

The growing area of genetically modified (GM) crops has substantially expanded since they were first commercialized in 1996. Correspondingly, the adoption of GM crops has brought huge economic and environmental benefits. All these achievements have been primarily supported by two simple traits of herbicide tolerance and insect resistance in the past 17 years. However, this situation will change soon. Recently, the advance of new products, technologies and safety assessment approaches has provided new opportunities for development of GM crops. In this review, we focus on the developmental trend in various aspects of GM crops including new products, technical innovation and risk assessment approaches, as well as potential challenges that GM crops are currently encountering.

Concepts: Risk, Maize, Genetically modified organism, Genetically modified food, Genetic engineering

27

Genetic use restriction technologies (GURTs), developed to secure return on investments through protection of plant varieties, are among the most controversial and opposed genetic engineering biotechnologies as they are perceived as a tool to force farmers to depend on multinational corporations' seed monopolies. In this work, the currently proposed strategies are described and compared with some of the principal techniques implemented for preventing transgene flow and/or seed saving, with a simultaneous analysis of the future perspectives of GURTs taking into account potential benefits, possible impacts on farmers and local plant genetic resources (PGR), hypothetical negative environmental issues and ethical concerns related to intellectual property that have led to the ban of this technology.

Concepts: DNA, Biotechnology, Human rights, Investment, Corporation, Genetic engineering, Multinational corporation, Dutch East India Company

27

The rapid uptake of biotech crops around the world demonstrates not only strong producer and consumer demand for the technology and its products, but also that where regulatory regimes function effectively and markets are allowed to operate as normal, co-existence between genetically modified (GM) and non-GM supply chains is readily achievable. However, the polarized debate over GMOs within the European Union over the past 15 years has resulted in a highly politicised and progressively impractical approach to the issue of GM crop co-existence, which in itself has become a further barrier to the technology’s development. This article argues that co-existence should not be treated as a pro- or anti-GM issue, and that the aim of co-existence measures should be to permit consumer choice and freedom to operate whatever the production method involved. It suggests that supply chain-based solutions to co-existence, rather than Government prescription, offer the most pragmatic and flexible response to the commercial realities of servicing differentiated market demands.

Concepts: Agriculture, European Union, Europe, Supply and demand, Genetically modified organism, Genetically modified food, Genetic engineering, Citizenship of the European Union