SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Genetic disorder

167

A high incidence of orofacial clefts is reported in China, but no data has shown the relation between cleft types and the incidence of other defects so far. The aim of this study is to assess the incidence of congenital heart diseases and other organic defects associated with different types of orofacial clefts.

Concepts: Prevalence, Diseases and disorders, Epidemiology, Heart, Congenital heart disease, Heart disease, Genetic disorder

167

Since the discovery that proteins mutated in different forms of polycystic kidney disease (PKD) are tightly associated with primary cilia, strong efforts have been made to define the role of this organelle in the pathogenesis of cyst formation. Cilia are filiform microtubular structures, anchored in the basal body and extending from the apical membrane into the tubular lumen. Early work established that cilia act as flow sensors, eliciting calcium transients in response to bending, which involve the two proteins mutated in autosomal dominant PKD (ADPKD), polycystin-1 and -2. Loss of cilia alone is insufficient to cause cyst formation. Nevertheless, a large body of evidence links flow sensing by cilia to aspects relevant for cyst formation such as cell polarity, Stat6- and mammalian target of rapamycin signalling. This review summarizes the current literature on cilia and flow sensing with respect to PKD and discusses how these findings intercalate with different aspects of cyst formation.

Concepts: Kidney, Cytoskeleton, Genetic disorder, Golgi apparatus, Immune system, Cilium, Cell, Polycystic kidney disease

93

Prospective studies in non-Mediterranean populations have consistently related increasing nut consumption to lower coronary heart disease mortality. A small protective effect on all-cause and cancer mortality has also been suggested. To examine the association between frequency of nut consumption and mortality in individuals at high cardiovascular risk from Spain, a Mediterranean country with a relatively high average nut intake per person.

Concepts: The Association, Demography, Blood vessel, Epidemiology, Genetic disorder, Infectious disease, Heart disease, Heart

90

Information about genetic and phenotypic risk of type 2 diabetes is now widely available and is being incorporated into disease prevention programs. Whether such information motivates behavior change or has adverse effects is uncertain. We examined the effect of communicating an estimate of genetic or phenotypic risk of type 2 diabetes in a parallel group, open, randomized controlled trial.

Concepts: Genetic disorder, Hypertension, Evolution, Effectiveness, Uncertainty, Diabetes mellitus type 2, Obesity, Randomized controlled trial

86

Survivors of teenage and young adult cancer are acknowledged as understudied. Little is known about their long-term adverse health risks, particularly of cardiac disease that is increased in other cancer populations where cardiotoxic treatments have been used.

Concepts: Actuarial science, Population, Death, Genetic disorder, Senescence, Demography, Cancer, Epidemiology

84

Genetic studies of human disease have traditionally focused on the detection of disease-causing mutations in afflicted individuals. Here we describe a complementary approach that seeks to identify healthy individuals resilient to highly penetrant forms of genetic childhood disorders. A comprehensive screen of 874 genes in 589,306 genomes led to the identification of 13 adults harboring mutations for 8 severe Mendelian conditions, with no reported clinical manifestation of the indicated disease. Our findings demonstrate the promise of broadening genetic studies to systematically search for well individuals who are buffering the effects of rare, highly penetrant, deleterious mutations. They also indicate that incomplete penetrance for Mendelian diseases is likely more common than previously believed. The identification of resilient individuals may provide a first step toward uncovering protective genetic variants that could help elucidate the mechanisms of Mendelian diseases and new therapeutic strategies.

Concepts: Disease, DNA, Cancer, Epidemiology, Gene, Genetic disorder, Medicine, Genetics

74

Among adults, skipping meals is associated with excess body weight, hypertension, insulin resistance, and elevated fasting lipid concentrations. However, it remains unknown whether specific eating habits regardless of dietary composition influence coronary heart disease (CHD) risk. The objective of this study was to prospectively examine eating habits and risk of CHD.

Concepts: Death, Metabolic syndrome, Genetic disorder, Diabetes mellitus, Heart, Nutrition, Obesity, Heart disease

73

Sequencing of the human genome and decades of genetic association and linkage studies have dramatically improved our understanding of the etiology of many diseases. However, the multiple causes of complex diseases are still not well understood, in part because genetic and sociocultural risk factors are not typically investigated concurrently. Hypertension is a leading risk factor for cardiovascular disease and afflicts more African Americans than any other racially defined group in the US. Few genetic loci for hypertension have been replicated across populations, which may reflect population-specific differences in genetic variants and/or inattention to relevant sociocultural factors. Discrimination is a salient sociocultural risk factor for poor health and has been associated with hypertension. Here we use a biocultural approach to study blood pressure (BP) variation in African Americans living in Tallahassee, Florida by genotyping over 30,000 single nucleotide polymorphisms (SNPs) and capturing experiences of discrimination using novel measures of unfair treatment of self and others (n = 157). We perform a joint admixture and genetic association analysis for BP that prioritizes regions of the genome with African ancestry. We only report significant SNPs that were confirmed through our simulation analyses, which were performed to determine the false positive rate. We identify eight significant SNPs in five genes that were previously associated with cardiovascular diseases. When we include measures of unfair treatment and test for interactions between SNPs and unfair treatment, we identify a new class of genes involved in multiple phenotypes including psychosocial distress and mood disorders. Our results suggest that inclusion of culturally relevant stress measures, like unfair treatment in African Americans, may reveal new genes and biological pathways relevant to the etiology of hypertension, and may also improve our understanding of the complexity of gene-environment interactions that underlie complex diseases.

Concepts: Single-nucleotide polymorphism, Human Genome Project, Genetic disorder, Human genome, Genome, Gene, Genetics, DNA

57

Background Whole-exome sequencing is a diagnostic approach for the identification of molecular defects in patients with suspected genetic disorders. Methods We developed technical, bioinformatic, interpretive, and validation pipelines for whole-exome sequencing in a certified clinical laboratory to identify sequence variants underlying disease phenotypes in patients. Results We present data on the first 250 probands for whom referring physicians ordered whole-exome sequencing. Patients presented with a range of phenotypes suggesting potential genetic causes. Approximately 80% were children with neurologic phenotypes. Insurance coverage was similar to that for established genetic tests. We identified 86 mutated alleles that were highly likely to be causative in 62 of the 250 patients, achieving a 25% molecular diagnostic rate (95% confidence interval, 20 to 31). Among the 62 patients, 33 had autosomal dominant disease, 16 had autosomal recessive disease, and 9 had X-linked disease. A total of 4 probands received two nonoverlapping molecular diagnoses, which potentially challenged the clinical diagnosis that had been made on the basis of history and physical examination. A total of 83% of the autosomal dominant mutant alleles and 40% of the X-linked mutant alleles occurred de novo. Recurrent clinical phenotypes occurred in patients with mutations that were highly likely to be causative in the same genes and in different genes responsible for genetically heterogeneous disorders. Conclusions Whole-exome sequencing identified the underlying genetic defect in 25% of consecutive patients referred for evaluation of a possible genetic condition. (Funded by the National Human Genome Research Institute.).

Concepts: Gregor Mendel, DNA, Phenylketonuria, Allele, Mutation, Genetic disorder, Gene, Genetics

56

Background Whole-exome sequencing can provide insight into the relationship between observed clinical phenotypes and underlying genotypes. Methods We conducted a retrospective analysis of data from a series of 7374 consecutive unrelated patients who had been referred to a clinical diagnostic laboratory for whole-exome sequencing; our goal was to determine the frequency and clinical characteristics of patients for whom more than one molecular diagnosis was reported. The phenotypic similarity between molecularly diagnosed pairs of diseases was calculated with the use of terms from the Human Phenotype Ontology. Results A molecular diagnosis was rendered for 2076 of 7374 patients (28.2%); among these patients, 101 (4.9%) had diagnoses that involved two or more disease loci. We also analyzed parental samples, when available, and found that de novo variants accounted for 67.8% (61 of 90) of pathogenic variants in autosomal dominant disease genes and 51.7% (15 of 29) of pathogenic variants in X-linked disease genes; both variants were de novo in 44.7% (17 of 38) of patients with two monoallelic variants. Causal copy-number variants were found in 12 patients (11.9%) with multiple diagnoses. Phenotypic similarity scores were significantly lower among patients in whom the phenotype resulted from two distinct mendelian disorders that affected different organ systems (50 patients) than among patients with disorders that had overlapping phenotypic features (30 patients) (median score, 0.21 vs. 0.36; P=1.77×10(-7)). Conclusions In our study, we found multiple molecular diagnoses in 4.9% of cases in which whole-exome sequencing was informative. Our results show that structured clinical ontologies can be used to determine the degree of overlap between two mendelian diseases in the same patient; the diseases can be distinct or overlapping. Distinct disease phenotypes affect different organ systems, whereas overlapping disease phenotypes are more likely to be caused by two genes encoding proteins that interact within the same pathway. (Funded by the National Institutes of Health and the Ting Tsung and Wei Fong Chao Foundation.).

Concepts: Genetics, Classical genetics, Genetic disorder, Genotype-phenotype distinction, Genotype, Evolution, Phenotype, Gene