Discover the most talked about and latest scientific content & concepts.

Concept: Gene silencing


Transgenerational effects have wide-ranging implications for human health, biological adaptation, and evolution; however, their mechanisms and biology remain poorly understood. Here, we demonstrate that a germline nuclear small RNA/chromatin pathway can maintain stable inheritance for many generations when triggered by a piRNA-dependent foreign RNA response in C. elegans. Using forward genetic screens and candidate approaches, we find that a core set of nuclear RNAi and chromatin factors is required for multigenerational inheritance of environmental RNAi and piRNA silencing. These include a germline-specific nuclear Argonaute HRDE1/WAGO-9, a HP1 ortholog HPL-2, and two putative histone methyltransferases, SET-25 and SET-32. piRNAs can trigger highly stable long-term silencing lasting at least 20 generations. Once established, this long-term memory becomes independent of the piRNA trigger but remains dependent on the nuclear RNAi/chromatin pathway. Our data present a multigenerational epigenetic inheritance mechanism induced by piRNAs.

Concepts: DNA, Genetics, Natural selection, Histone, Biology, RNA, Gene silencing, Charles Darwin


Conjugation of small interfering RNA (siRNA) to an asialoglycoprotein receptor ligand derived from N-acetylgalactosamine (GalNAc) facilitates targeted delivery of the siRNA to hepatocytes in vitro and in vivo. The ligands derived from GalNAc are compatible with solid-phase oligonucleotide synthesis and deprotection conditions, with synthesis yields comparable to those of standard oligonucleotides. Subcutaneous (SC) administration of siRNA-GalNAc conjugates resulted in robust RNAi-mediated gene silencing in liver. Refinement of the siRNA chemistry achieved a 5-fold improvement in efficacy over the parent design in vivo with a median effective dose (ED50) of 1 mg/kg following a single dose. This enabled the SC administration of siRNA-GalNAc conjugates at therapeutically relevant doses and, importantly, at dose volumes of ≤1 mL. Chronic weekly dosing resulted in sustained dose-dependent gene silencing for over 9 months with no adverse effects in rodents. The optimally chemically modified siRNA-GalNAc conjugates are hepatotropic and long-acting and have the potential to treat a wide range of diseases involving liver-expressed genes.

Concepts: Gene expression, Molecular biology, RNA, Small interfering RNA, RNA interference, Dose, Oligonucleotide synthesis, Gene silencing


TT-034 (PF-05095808) is a recombinant adeno-associated virus serotype 8 (AAV8) agent expressing three short hairpin RNA (shRNA) pro-drugs that target the hepatitis C virus (HCV) RNA genome. The cytosolic enzyme Dicer cleaves each shRNA into multiple, potentially active small interfering RNA (siRNA) drugs. Using next-generation sequencing (NGS) to identify and characterize active shRNAs maturation products, we observed that each TT-034-encoded shRNA could be processed into as many as 95 separate siRNA strands. Few of these appeared active as determined by Sanger 5' RNA Ligase-Mediated Rapid Amplification of cDNA Ends (5-RACE) and through synthetic shRNA and siRNA analogue studies. Moreover, NGS scrutiny applied on 5-RACE products (RACE-seq) suggested that synthetic siRNAs could direct cleavage in not one, but up to five separate positions on targeted RNA, in a sequence-dependent manner. These data support an on-target mechanism of action for TT-034 without cytotoxicity and question the accepted precision of substrate processing by the key RNA interference (RNAi) enzymes Dicer and siRNA-induced silencing complex (siRISC).Molecular Therapy-Nucleic Acids (2014) 3, e145; doi:10.1038/mtna.2013.73; published online 4 February 2014.

Concepts: DNA, Gene expression, Virus, RNA, Small interfering RNA, RNA interference, Gene silencing, Dicer


Plant parasitic nematodes cause approximately 157 billion US dollars in losses worldwide annually. The soybean cyst nematode (SCN), Heterodera glycines, is responsible for an estimated one billion dollars in losses to the US farmer each year. A promising new approach for control of plant parasitic nematode control is gene silencing. We tested this approach by silencing the SCN gene HgALD, encoding fructose-1,6-diphosphate aldolase. This enzyme is important in the conversion of glucose into energy and may be especially important in actin-based motility during parasite invasion of its host. An RNAi construct targeted to silence HgALD was transformed into soybean roots of composite plants to examine its efficacy to reduce the development of females formed by SCN. The number of mature females on roots transformed with the RNAi construct designed to silence the HgALD gene was reduced by 58%. These results indicate that silencing the aldolase gene of SCN can greatly decrease the number of female SCN reaching maturity, and it is a promising step towards broadening resistance of plants against plant-parasitic nematodes.

Concepts: Bacteria, RNA, Nematode, Small interfering RNA, RNA interference, Gene silencing, Post-transcriptional gene silencing, Heterodera


Hydrophobized block copolymers have widely been developed for construction of polymeric micelles for stable delivery of nucleic acids as well as anticancer drugs. Herein, we elaborated an A-B-C type of triblock copolymer featuring shell-forming A-segment, nucleic acid-loading B-segment, and stable core-forming C-segment, directed toward construction of a three-layered polymeric micelle as a small interfering RNA (siRNA) vehicle. The triblock copolymer was prepared with nonionic and hydrophilic poly(ethylene glycol) (PEG), cationic poly(l-lysine) (PLys), and poly{N-[N-(2-aminoethyl)-2-aminoethyl]aspartamide} [PAsp(DET)] bearing a hydrophobic dimethoxy nitrobenzyl ester (DN) moiety in the side chain [PEG-PLys-PAsp(DET-DN)]. The resulting triblock copolymers spontaneously formed sub-100 nm-sized polymeric micelles with a hydrophobic PAsp(DET-DN) core as well as PEG shell in an aqueous solution. This micelle was able to incorporate siRNA into the intermediate PLys layer, associated with slightly reduced size and a narrow size distribution. The triblock copolymer micelles (TCMs) stably encapsulated siRNA in serum-containing medium, whereas randomly hydrophobized triblock copolymer [PEG-PLys(DN)-PAsp(DET-DN)] control micelles (RCMs) gradually released siRNA with time and non-PEGylated diblock copolymer [PLys-PAsp(DET-DN)] control micelles (DCMs) immediately formed large aggregates. The TCMs thus induced appreciably stronger sequence-specific gene silencing in cultured cancer cells, compared to those control micelles. The siRNA delivery with TCMs was further examined in terms of cellular uptake and intracellular trafficking. The flow cytometric analysis revealed that the cellular uptake of TCMs was more efficient than that of RCMs, but less efficient than that of DCMs. The intracellular trafficking study using confocal laser scanning microscopy combined with fluorescence resonance energy transfer (FRET) revealed that the TCMs could readily release the siRNA payload within cells, which was in contrast to the DCMs exhibiting much slower release profile. This result indicates that PEG shell contributed to the smooth release of siRNA from TCMs within the cells, presumably due to avoiding irreversible aggregate formation. The obtained results demonstrated that the design of separately functionalized polymer segments expanded the performance of polymeric micelles for successful siRNA delivery.

Concepts: DNA, Gene expression, RNA, Polymer, Copolymer, Polymer chemistry, Förster resonance energy transfer, Gene silencing


RNAi is a powerful tool for gene silencing that can be used to reduce undesirable overexpression of oncogenes as a novel form of cancer treatment. However, when using RNAi as a therapeutic tool there is potential for associated gene effects. This study aimed to utilize gold nanoparticles to deliver siRNA into HeLa cells.

Concepts: DNA, Protein, Gene, Gene expression, RNA, Small interfering RNA, RNA interference, Gene silencing


Ca(2+)-siRNA nanocomplexes represent a simple yet an effective platform for siRNA delivery into the cell cytoplasm, with subsequent successful siRNA-induced target gene silencing. Herein, we aimed to elucidate the roles played by calcium ions in siRNA nanocomplex formation, cell uptake, and endosomal escape. We investigated whether the replacement of Ca(2+)in the nanocomplex by other bivalent cations would affect their cell entry and subsequent gene silencing. Our results indicate that Mg(2+) and Ba(2+) lead to the formation of nanocomplexes of similar physical features (size=100nm, surface charge ζ=-8mV) as the Ca(2+)-siRNA nanocomplexes. Yet, these nanocomplexes were not uptaken by the cells to the same extent as those prepared with Ca(2+), and siRNA-induced target gene silencing was not obtained. Cell internalization of Ca(2+-)-siRNA nanocomplexes, examined by employing chemical inhibitors to clathrin-, caveolin- and dynamin-mediated endocytosis pathways, indicated the involvement of all mechanisms in the process. Inhibition of endosome acidification by bafilomycin completely abolished the siRNA-mediated silencing by Ca(2+)-siRNA nanocomplexes. Collectively, our results indicate that Ca(2+) promotes cell internalization and rapid endosomal escape, thus leading to the efficient siRNA-induced target gene silencing elicited by the Ca(2+)-siRNA nanocomplexes.

Concepts: DNA, Gene expression, Cell, Golgi apparatus, Cytoplasm, Ion, Endocytosis, Gene silencing



Explore the use of transferrin-receptor peptide-functionalized nanoparticles (NPs) targeting blood-brain barrier (BBB) as siRNA carriers to silence P-glycoprotein (P-gp).

Concepts: Gene silencing


To synthesize the arginine-glycine-aspartic (RGD) functionalized dendrimer-entrapped gold nanoparticles (Au DENPs) for siRNA delivery to induce gene silencing of cancer cells in vitro and in vivo.

Concepts: DNA, Gene expression, Nanoparticle, RNA, In vivo, Gold, In vitro, Gene silencing