Discover the most talked about and latest scientific content & concepts.

Concept: Gene pool


The rapid expansion of human activities threatens ocean-wide biodiversity. Numerous marine animal populations have declined, yet it remains unclear whether these trends are symptomatic of a chronic accumulation of global marine extinction risk. We present the first systematic analysis of threat for a globally distributed lineage of 1,041 chondrichthyan fishes-sharks, rays, and chimaeras. We estimate that one-quarter are threatened according to IUCN Red List criteria due to overfishing (targeted and incidental). Large-bodied, shallow-water species are at greatest risk and five out of the seven most threatened families are rays. Overall chondrichthyan extinction risk is substantially higher than for most other vertebrates, and only one-third of species are considered safe. Population depletion has occurred throughout the world’s ice-free waters, but is particularly prevalent in the Indo-Pacific Biodiversity Triangle and Mediterranean Sea. Improved management of fisheries and trade is urgently needed to avoid extinctions and promote population recovery. DOI:

Concepts: Conservation biology, Evolution, Plant, Endangered species, Extinction, Genetic erosion, Gene pool, IUCN Red List


Since the 1980s, many have suggested we are in the midst of a massive extinction crisis, yet only 799 (0.04%) of the 1.9 million known recent species are recorded as extinct, questioning the reality of the crisis. This low figure is due to the fact that the status of very few invertebrates, which represent the bulk of biodiversity, have been evaluated. Here we show, based on extrapolation from a random sample of land snail species via two independent approaches, that we may already have lost 7% (130,000 extinctions) of the species on Earth. However, this loss is masked by the emphasis on terrestrial vertebrates, the target of most conservation actions. Projections of species extinction rates are controversial because invertebrates are essentially excluded from these scenarios. Invertebrates can and must be assessed if we are to obtain a more realistic picture of the sixth extinction crisis.

Concepts: Conservation biology, Evolution, Extinction, Genetic erosion, Dinosaur, Gene pool, Extinction event, Holocene extinction


Speciation results from the progressive accumulation of mutations that decrease the probability of mating between parental populations or reduce the fitness of hybrids-the so-called species barriers. The speciation genomic literature, however, is mainly a collection of case studies, each with its own approach and specificities, such that a global view of the gradual process of evolution from one to two species is currently lacking. Of primary importance is the prevalence of gene flow between diverging entities, which is central in most species concepts and has been widely discussed in recent years. Here, we explore the continuum of speciation thanks to a comparative analysis of genomic data from 61 pairs of populations/species of animals with variable levels of divergence. Gene flow between diverging gene pools is assessed under an approximate Bayesian computation (ABC) framework. We show that the intermediate “grey zone” of speciation, in which taxonomy is often controversial, spans from 0.5% to 2% of net synonymous divergence, irrespective of species life history traits or ecology. Thanks to appropriate modeling of among-locus variation in genetic drift and introgression rate, we clarify the status of the majority of ambiguous cases and uncover a number of cryptic species. Our analysis also reveals the high incidence in animals of semi-isolated species (when some but not all loci are affected by barriers to gene flow) and highlights the intrinsic difficulty, both statistical and conceptual, of delineating species in the grey zone of speciation.

Concepts: Gene, Genetics, Mutation, Evolution, Biology, Species, Speciation, Gene pool


Recent studies clarify where the most vulnerable species live, where and how humanity changes the planet, and how this drives extinctions. We assess key statistics about species, their distribution, and their status. Most are undescribed. Those we know best have large geographical ranges and are often common within them. Most known species have small ranges. The numbers of small-ranged species are increasing quickly, even in well-known taxa. They are geographically concentrated and are disproportionately likely to be threatened or already extinct. Current rates of extinction are about 1000 times the likely background rate of extinction. Future rates depend on many factors and are poised to increase. Although there has been rapid progress in developing protected areas, such efforts are not ecologically representative, nor do they optimally protect biodiversity.

Concepts: Conservation biology, Evolution, Ecology, Endangered species, Extinction, Genetic erosion, Biogeography, Gene pool


Consensus has been reached that global biodiversity loss impairs ecosystem functioning and the sustainability of services beneficial to humanity. However, the ecosystem consequences of extinction in natural communities are moderated by compensatory species dynamics, yet these processes are rarely accounted for in impact assessments and seldom considered in conservation programmes. Here, we use marine invertebrate communities to parameterise numerical models of sediment bioturbation - a key mediator of biogeochemical cycling - to determine whether post-extinction compensatory mechanisms alter biodiversity-ecosystem function relations following non-random extinctions. We find that compensatory dynamics lead to trajectories of sediment mixing that diverge from those without compensation, and that the form, magnitude and variance of each probabilistic distribution is highly influenced by the type of compensation and the functional composition of surviving species. Our findings indicate that the generalized biodiversity-function relation curve, as derived from multiple empirical investigations of random species loss, is unlikely to yield representative predictions for ecosystem properties in natural systems because the influence of post-extinction community dynamics are under-represented. Recognition of this problem is fundamental to management and conservation efforts, and will be necessary to ensure future plans and adaptation strategies minimize the adverse impacts of the biodiversity crisis.

Concepts: Biodiversity, Conservation biology, Evolution, Plant, Ecology, Extinction, Genetic erosion, Gene pool


Amphibian chytridiomycosis has caused precipitous declines in hundreds of species worldwide. By tracking mountain chicken (Leptodactylus fallax) populations before, during and after the emergence of chytridiomycosis, we quantified the real-time species level impacts of this disease. We report a range-wide species decline amongst the fastest ever recorded, with a loss of over 85% of the population in fewer than 18 months on Dominica and near extinction on Montserrat. Genetic diversity declined in the wild, but emergency measures to establish a captive assurance population captured a representative sample of genetic diversity from Montserrat. If the Convention on Biological Diversity’s targets are to be met, it is important to evaluate the reasons why they appear consistently unattainable. The emergence of chytridiomycosis in the mountain chicken was predictable, but the decline could not be prevented. There is an urgent need to build mitigation capacity where amphibians are at risk from chytridiomycosis.

Concepts: Biodiversity, Conservation biology, Evolution, Biology, Species, Ecology, Genetic erosion, Gene pool


Parasites comprise a substantial portion of total biodiversity. Ultimately, this means that host extinction could result in many secondary extinctions of obligate parasites and potentially alter host-parasite network structure. Here, we examined a highly resolved fish-parasite network to determine key hosts responsible for maintaining parasite diversity and network structure (quantified here as nestedness and modularity). We evaluated four possible host extinction orders and compared the resulting co-extinction dynamics to random extinction simulations; including host removal based on estimated extinction risk, parasite species richness and host level contributions to nestedness and modularity. We found that all extinction orders, except the one based on realistic extinction risk, resulted in faster declines in parasite diversity and network structure relative to random biodiversity loss. Further, we determined species-level contributions to network structure were best predicted by parasite species richness and host family. Taken together, we demonstrate that a small proportion of hosts contribute substantially to network structure and that removal of these hosts results in rapid declines in parasite diversity and network structure. As network stability can potentially be inferred through measures of network structure, our findings may provide insight into species traits that confer stability.

Concepts: Biodiversity, Conservation biology, Evolution, Species, Ecology, Endangered species, Genetic erosion, Gene pool


A central topic for conservation science is evaluating how human activities influence global species diversity. Humanity exacerbates extinction rates. But by what mechanisms does humanity drive the emergence of new species? We review human-mediated speciation, compare speciation and known extinctions, and discuss the challenges of using net species diversity as a conservation objective. Humans drive rapid evolution through relocation, domestication, hunting and novel ecosystem creation-and emerging technologies could eventually provide additional mechanisms. The number of species relocated, domesticated and hunted during the Holocene is of comparable magnitude to the number of observed extinctions. While instances of human-mediated speciation are known, the overall effect these mechanisms have upon speciation rates has not yet been quantified. We also explore the importance of anthropogenic influence upon divergence in microorganisms. Even if human activities resulted in no net loss of species diversity by balancing speciation and extinction rates, this would probably be deemed unacceptable. We discuss why, based upon ‘no net loss’ conservation literature-considering phylogenetic diversity and other metrics, risk aversion, taboo trade-offs and spatial heterogeneity. We conclude that evaluating speciation alongside extinction could result in more nuanced understanding of biosphere trends, clarifying what it is we actually value about biodiversity.

Concepts: Biodiversity, Conservation biology, Evolution, Species, Ecology, Speciation, Genetic erosion, Gene pool


Some people despair that most species will go extinct before they are discovered. However, such worries result from overestimates of how many species may exist, beliefs that the expertise to describe species is decreasing, and alarmist estimates of extinction rates. We argue that the number of species on Earth today is 5 ± 3 million, of which 1.5 million are named. New databases show that there are more taxonomists describing species than ever before, and their number is increasing faster than the rate of species description. Conservation efforts and species survival in secondary habitats are at least delaying extinctions. Extinction rates are, however, poorly quantified, ranging from 0.01 to 1% (at most 5%) per decade. We propose practical actions to improve taxonomic productivity and associated understanding and conservation of biodiversity.

Concepts: Conservation biology, Evolution, Plant, Ecology, Extinction, Genetic erosion, Gene pool, Habitat fragmentation


Pollinators are fundamental to maintaining both biodiversity and agricultural productivity, but habitat destruction, loss of flower resources, and increased use of pesticides are causing declines in their abundance and diversity. Using historical records, we assessed the rate of extinction of bee and flower-visiting wasp species in Britain from the mid-19th century to the present. The most rapid phase of extinction appears to be related to changes in agricultural policy and practice beginning in the 1920s, before the agricultural intensification prompted by the Second World War, often cited as the most important driver of biodiversity loss in Britain. Slowing of the extinction rate from the 1960s onward may be due to prior loss of the most sensitive species and/or effective conservation programs.

Concepts: Biodiversity, Conservation biology, Agriculture, Evolution, Ecology, Genetic erosion, Gene pool, Habitat fragmentation