SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Gekkonidae

531

The gecko genus Geckolepis, endemic to Madagascar and the Comoro archipelago, is taxonomically challenging. One reason is its members ability to autotomize a large portion of their scales when grasped or touched, most likely to escape predation. Based on an integrative taxonomic approach including external morphology, morphometrics, genetics, pholidosis, and osteology, we here describe the first new species from this genus in 75 years: Geckolepis megalepissp. nov. from the limestone karst of Ankarana in northern Madagascar. The new species has the largest known body scales of any gecko (both relatively and absolutely), which come off with exceptional ease. We provide a detailed description of the skeleton of the genus Geckolepis based on micro-Computed Tomography (micro-CT) analysis of the new species, the holotype of G. maculata, the recently resurrected G. humbloti, and a specimen belonging to an operational taxonomic unit (OTU) recently suggested to represent G. maculata. Geckolepis is characterized by highly mineralized, imbricated scales, paired frontals, and unfused subolfactory processes of the frontals, among other features. We identify diagnostic characters in the osteology of these geckos that help define our new species and show that the OTU assigned to G. maculata is probably not conspecific with it, leaving the taxonomic identity of this species unclear. We discuss possible reasons for the extremely enlarged scales of G. megalepis in the context of an anti-predator defence mechanism, and the future of Geckolepis taxonomy.

Concepts: Biology, Taxonomy, Reptile, Gecko, Madagascar, Taxonomic rank, Zoological nomenclature, Gekkonidae

28

An epizootic of ulcerative to nodular ventral dermatitis was observed in a large breeding colony of 8-month to 5-year-old leopard geckos (Eublepharis macularius) of both sexes. Two representative mature male geckos were euthanized for diagnostic necropsy. The Chrysosporium anamorph of Nannizziopsis vriesii (CANV) was isolated from the skin lesions, and identification was confirmed by sequencing of the internal transcribed spacer region of the rRNA gene. Histopathology revealed multifocal to coalescing dermal and subcutaneous heterophilic granulomas that contained septate fungal hyphae. There was also multifocal epidermal hyperplasia with hyperkeratosis, and similar hyphae were present within the stratum corneum, occasionally with terminal chains of arthroconidia consistent with the CANV. In one case, there was focal extension of granulomatous inflammation into the underlying masseter muscle. This is the first report of dermatitis and cellulitis due to the CANV in leopard geckos.

Concepts: Pathology, Ribosomal RNA, Anatomical pathology, Skin, Granuloma, Eublepharis, Gekkonidae, Leopard gecko

24

Since the discovery of the mechanism of adhesion in geckos, many synthetic dry adhesives have been developed with desirable gecko-like properties such as reusability, directionality, self-cleaning ability, rough surface adhesion and high adhesive stress. However, fully exploiting these adhesives in practical applications at different length scales requires efficient scaling (i.e. with little loss in adhesion as area grows). Just as natural gecko adhesives have been used as a benchmark for synthetic materials, so can gecko adhesion systems provide a baseline for scaling efficiency. In the tokay gecko (Gekko gecko), a scaling power law has been reported relating the maximum shear stress σmax to the area A: σmax ∝ A(-¼). We present a mechanical concept which improves upon the gecko’s non-uniform load-sharing and results in a nearly even load distribution over multiple patches of gecko-inspired adhesive. We created a synthetic adhesion system incorporating this concept which shows efficient scaling across four orders of magnitude of area, yielding an improved scaling power law: σmax ∝ A(-1/50). Furthermore, we found that the synthetic adhesion system does not fail catastrophically when a simulated failure is induced on a portion of the adhesive. In a practical demonstration, the synthetic adhesion system enabled a 70 kg human to climb vertical glass with 140 cm(2) of adhesive per hand.

Concepts: Gecko, Shear stress, Scale, Adhesion, Adhesive, Gekkonidae, Invasive animal species, Tokay gecko

17

Tails are an intricate component of the locomotor system for many vertebrates. Leopard geckos (Eublepharis macularius) possess a large tail that is laterally undulated during steady locomotion. However, the tail is readily shed via autotomy, resulting in the loss of tail function, loss in body mass, and a cranial shift in the center of mass. To elucidate the function of tail undulations, we investigated changes in limb kinematics after manipulating the tail artificially by restricting tail undulations and naturally by removing the tail via autotomy. Restricting tail undulations resulted in kinematic adjustments similar to those that occur following tail autotomy, characterized by more flexed hind limb joints. These data suggest that effects of autotomy on locomotion may be linked to the loss of tail movements rather than the loss of mass or a shift in center of mass. We also provide empirical support for the link between lateral tail undulations and step length through the rotation of the pelvic girdle and retraction of the femur. Restriction and autotomy of the tail limits pelvic rotation, which reduces femur retraction and decreases step length. Our findings demonstrate a functional role for tail undulations in geckos, which likely applies to other terrestrial vertebrates.

Concepts: Mass, Gecko, Vertebra, Human anatomy, Classical mechanics, Eublepharis, Gekkonidae, Leopard gecko

10

Geckos are among the most species-rich reptile groups and the sister clade to all other lizards and snakes. Geckos possess a suite of distinctive characteristics, including adhesive digits, nocturnal activity, hard, calcareous eggshells, and a lack of eyelids. However, one gecko clade, the Eublepharidae, appears to be the exception to most of these ‘rules’ and lacks adhesive toe pads, has eyelids, and lays eggs with soft, leathery eggshells. These differences make eublepharids an important component of any investigation into the underlying genomic innovations contributing to the distinctive phenotypes in ‘typical’ geckos.

Concepts: Reptile, Gecko, Squamata, Lizard, Eublepharis, Gekkonidae, Leopard gecko, Pet lizards

8

Multisystemic infections with a morphologically unusual bacterium were first observed in captive critically endangered Lister’s geckos (Lepidodactylus listeri) on Christmas Island in October 2014. Since then the infection was identified in another captive critically endangered lizard species, the blue-tailed skink (Cryptoblepharus egeriae) and two species of invasive geckos; the four clawed gecko (Gehyra mutilata) and Asian house gecko (Hemidactylus frenatus), in a wide geographic range across the east side of the island. The Gram and periodic acid-Schiff positive cocci to diplococci have a propensity to form chains surrounded by a matrix, which ultrastructurally appears to be formed by fibrillar capsular projections. The bacterium was associated with severe and extensive replacement of tissues, but minimal host inflammatory response. Attempts to grow the organism in culture and in embryonated eggs were unsuccessful. Molecular characterisation of the organism placed it as a novel member of the genus Enterococcus. Disease Risk Analyses including this organism should now be factored into conservation management actions and island biosecurity.

Concepts: Bacteria, Species, Infection, Gecko, Lizard, Gekkonidae, Hemidactylus, Common House Gecko

4

As for many lizards, the leopard gecko (Eublepharis macularius) can self-detach its tail to avoid predation and then regenerate a replacement. The replacement tail includes a regenerated spinal cord with a simple morphology: an ependymal layer surrounded by nerve tracts. We hypothesized that cells within the ependymal layer of the original spinal cord include populations of neural stem/progenitor cells (NSPCs) that contribute to the regenerated spinal cord. Prior to tail loss, we performed a bromodeoxyuridine pulse-chase experiment and found that a subset of ependymal layer cells (ELCs) were label-retaining after a 140-day chase period. Next, we conducted a detailed spatiotemporal characterization of these cells before, during, and after tail regeneration. Our findings show that SOX2, a hallmark protein of NSPCs, is constitutively expressed by virtually all ELCs before, during, and after regeneration. We also found that during regeneration, ELCs express an expanded panel of NSPC and lineage-restricted progenitor cell markers, including MSI-1, SOX9 and TUJ1. Using electron microscopy, we determined that multiciliated, uniciliated, and biciliated cells are present, although the latter was only observed in regenerated spinal cords. Our results demonstrate that cells within the ependymal layer of the original, regenerating and fully regenerate spinal cord represent a heterogeneous population. These include radial glia comparable to Type E and Type B cells, and a neuronal-like population of cerebrospinal fluid-contacting cells. We propose that spinal cord regeneration in geckos represents a truncation of the restorative trajectory observed in some urodeles and teleosts, resulting in the formation of a structurally distinct replacement. This article is protected by copyright. All rights reserved.

Concepts: Protein, Regeneration, Copyright, Lizard, Eublepharis, Gekkonidae, Leopard gecko

3

Many geckos use adhesive toe pads on the bottom of their digits to attach to surfaces with remarkable strength. Although gecko adhesion has been studied for hundreds of years, gaps exist in our understanding at the whole-animal level. It remains unclear whether the strength and maintenance of adhesion are determined by the animal or are passively intrinsic to the system. Here we show, for the first time, that strong adhesion is produced passively at the whole-animal level. Experiments on both live and recently euthanized tokay geckos (Gekko gecko) revealed that death does not affect the dynamic adhesive force or motion of a gecko foot when pulled along a vertical surface. Using a novel device that applied repeatable and steady-increasing pulling forces to the foot in shear, we found that the adhesive force was similarly high and variable when the animal was alive (mean ± s.d. = 5.4 ± 1.7 N) and within 30 min after death (5.4 ± 2.1 N). However, kinematic analyses showed that live geckos are able to control the degree of toe pad engagement and can rapidly stop strong adhesion by hyperextending the toes. This study offers the first assessment of whole-animal adhesive force under extremely controlled conditions. Our findings reveal that dead geckos maintain the ability to adhere with the same force as living animals, disproving that strong adhesion requires active control.

Concepts: Death, Animal, Foot, Gecko, Adhesion, Adhesive, Gekkonidae, Tokay gecko

1

The gecko adhesion system fascinates biologists and materials scientists alike for its strong, reversible, glue-free, dry adhesion. Understanding the adhesion system’s performance on various surfaces can give clues as to gecko behaviour, as well as towards designing synthetic adhesive mimics. Geckos encounter a variety of surfaces in their natural habitats; tropical geckos, such as Gekko gecko, encounter hard, rough tree trunks as well as soft, flexible leaves. While gecko adhesion on hard surfaces has been extensively studied, little work has been done on soft surfaces. Here, we investigate for the first time the influence of macroscale and nanoscale substrate modulus on whole animal adhesion on two different substrates (cellulose acetate and polydimethylsiloxane) in air and find that across 5 orders of magnitude in macroscale modulus, there is no change in adhesion. On the nanoscale, however, gecko adhesion is shown to depend on substrate modulus. This suggests that low surface-layer modulus may inhibit the gecko adhesion system, independent of other influencing factors such as macroscale composite modulus and surface energy. Understanding the limits of gecko adhesion is vital for clarifying adhesive mechanisms and in the design of synthetic adhesives for soft substrates (including for biomedical applications and wearable electronics).

Concepts: Materials science, Gecko, Cellulose acetate, Adhesion, Adhesive, Gekkonidae, Tokay gecko, Gekko

0

OBJECTIVE To describe diagnosis, treatment, and outcome of and risk factors for ophthalmic disease in leopard geckos (Eublepharis macularius) evaluated at a veterinary teaching hospital. DESIGN Retrospective case series. ANIMALS 112 of 144 (78%) leopard geckos that were evaluated at a veterinary teaching hospital in January 1985 through October 2013 and for which sufficient medical record information was available. PROCEDURES Information from medical records was used to identify leopard geckos with ophthalmic disease, characterize cases, and determine risk factors for the presence of ophthalmic disease. RESULTS Of the 112 leopard geckos, 52 (46%) had ophthalmic disease (mainly corneal or conjunctival disease). Female geckos were less likely to have ophthalmic disease, and there was a positive association between increasing age and ophthalmic disease. Use of a paper towel substrate, absence of any heat source, and lack of vitamin A supplementation were positively associated with a diagnosis of ophthalmic disease. Head dysecdysis was the only concurrent disorder significantly associated with ophthalmic disease. At necropsy, 5 affected leopard geckos had squamous metaplasia of the conjunctivae. CONCLUSIONS AND CLINICAL RELEVANCE Results indicated that ophthalmic disease is a common finding in leopard geckos. The cause of ocular surface disease in leopard geckos may be multifactorial, and hypovitaminosis A may be an important risk factor. Although animals receiving supplemental vitamin A were less likely to have ophthalmic disease, further understanding is required regarding the metabolism of and nutritional requirements for vitamin A in leopard geckos.

Concepts: Epidemiology, Nutrition, Vitamin, Vitamin C, Vitamin A, Eublepharis, Gekkonidae, Leopard gecko