SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Gekkonidae

525

The gecko genus Geckolepis, endemic to Madagascar and the Comoro archipelago, is taxonomically challenging. One reason is its members ability to autotomize a large portion of their scales when grasped or touched, most likely to escape predation. Based on an integrative taxonomic approach including external morphology, morphometrics, genetics, pholidosis, and osteology, we here describe the first new species from this genus in 75 years: Geckolepis megalepissp. nov. from the limestone karst of Ankarana in northern Madagascar. The new species has the largest known body scales of any gecko (both relatively and absolutely), which come off with exceptional ease. We provide a detailed description of the skeleton of the genus Geckolepis based on micro-Computed Tomography (micro-CT) analysis of the new species, the holotype of G. maculata, the recently resurrected G. humbloti, and a specimen belonging to an operational taxonomic unit (OTU) recently suggested to represent G. maculata. Geckolepis is characterized by highly mineralized, imbricated scales, paired frontals, and unfused subolfactory processes of the frontals, among other features. We identify diagnostic characters in the osteology of these geckos that help define our new species and show that the OTU assigned to G. maculata is probably not conspecific with it, leaving the taxonomic identity of this species unclear. We discuss possible reasons for the extremely enlarged scales of G. megalepis in the context of an anti-predator defence mechanism, and the future of Geckolepis taxonomy.

Concepts: Taxonomic rank, Reptile, Gekkonidae, Zoological nomenclature, Madagascar, Gecko, Biology, Taxonomy

28

An epizootic of ulcerative to nodular ventral dermatitis was observed in a large breeding colony of 8-month to 5-year-old leopard geckos (Eublepharis macularius) of both sexes. Two representative mature male geckos were euthanized for diagnostic necropsy. The Chrysosporium anamorph of Nannizziopsis vriesii (CANV) was isolated from the skin lesions, and identification was confirmed by sequencing of the internal transcribed spacer region of the rRNA gene. Histopathology revealed multifocal to coalescing dermal and subcutaneous heterophilic granulomas that contained septate fungal hyphae. There was also multifocal epidermal hyperplasia with hyperkeratosis, and similar hyphae were present within the stratum corneum, occasionally with terminal chains of arthroconidia consistent with the CANV. In one case, there was focal extension of granulomatous inflammation into the underlying masseter muscle. This is the first report of dermatitis and cellulitis due to the CANV in leopard geckos.

Concepts: Pathology, Skin, Ribosomal RNA, Leopard gecko, Granuloma, Gekkonidae, Eublepharis, Anatomical pathology

24

Since the discovery of the mechanism of adhesion in geckos, many synthetic dry adhesives have been developed with desirable gecko-like properties such as reusability, directionality, self-cleaning ability, rough surface adhesion and high adhesive stress. However, fully exploiting these adhesives in practical applications at different length scales requires efficient scaling (i.e. with little loss in adhesion as area grows). Just as natural gecko adhesives have been used as a benchmark for synthetic materials, so can gecko adhesion systems provide a baseline for scaling efficiency. In the tokay gecko (Gekko gecko), a scaling power law has been reported relating the maximum shear stress σmax to the area A: σmax ∝ A(-¼). We present a mechanical concept which improves upon the gecko’s non-uniform load-sharing and results in a nearly even load distribution over multiple patches of gecko-inspired adhesive. We created a synthetic adhesion system incorporating this concept which shows efficient scaling across four orders of magnitude of area, yielding an improved scaling power law: σmax ∝ A(-1/50). Furthermore, we found that the synthetic adhesion system does not fail catastrophically when a simulated failure is induced on a portion of the adhesive. In a practical demonstration, the synthetic adhesion system enabled a 70 kg human to climb vertical glass with 140 cm(2) of adhesive per hand.

Concepts: Invasive animal species, Scale, Adhesive, Gekkonidae, Shear stress, Tokay gecko, Adhesion, Gecko

10

Geckos are among the most species-rich reptile groups and the sister clade to all other lizards and snakes. Geckos possess a suite of distinctive characteristics, including adhesive digits, nocturnal activity, hard, calcareous eggshells, and a lack of eyelids. However, one gecko clade, the Eublepharidae, appears to be the exception to most of these ‘rules’ and lacks adhesive toe pads, has eyelids, and lays eggs with soft, leathery eggshells. These differences make eublepharids an important component of any investigation into the underlying genomic innovations contributing to the distinctive phenotypes in ‘typical’ geckos.

Concepts: Lizard, Pet lizards, Leopard gecko, Reptile, Gecko, Squamata, Gekkonidae, Eublepharis

3

Many geckos use adhesive toe pads on the bottom of their digits to attach to surfaces with remarkable strength. Although gecko adhesion has been studied for hundreds of years, gaps exist in our understanding at the whole-animal level. It remains unclear whether the strength and maintenance of adhesion are determined by the animal or are passively intrinsic to the system. Here we show, for the first time, that strong adhesion is produced passively at the whole-animal level. Experiments on both live and recently euthanized tokay geckos (Gekko gecko) revealed that death does not affect the dynamic adhesive force or motion of a gecko foot when pulled along a vertical surface. Using a novel device that applied repeatable and steady-increasing pulling forces to the foot in shear, we found that the adhesive force was similarly high and variable when the animal was alive (mean ± s.d. = 5.4 ± 1.7 N) and within 30 min after death (5.4 ± 2.1 N). However, kinematic analyses showed that live geckos are able to control the degree of toe pad engagement and can rapidly stop strong adhesion by hyperextending the toes. This study offers the first assessment of whole-animal adhesive force under extremely controlled conditions. Our findings reveal that dead geckos maintain the ability to adhere with the same force as living animals, disproving that strong adhesion requires active control.

Concepts: Animal, Adhesive, Foot, Gekkonidae, Death, Adhesion, Tokay gecko, Gecko

0

Multisystemic infections with a morphologically unusual bacterium were first observed in captive critically endangered Lister’s geckos (Lepidodactylus listeri) on Christmas Island in October 2014. Since then the infection was identified in another captive critically endangered lizard species, the blue-tailed skink (Cryptoblepharus egeriae) and two species of invasive geckos; the four clawed gecko (Gehyra mutilata) and Asian house gecko (Hemidactylus frenatus), in a wide geographic range across the east side of the island. The Gram and periodic acid-Schiff positive cocci to diplococci have a propensity to form chains surrounded by a matrix, which ultrastructurally appears to be formed by fibrillar capsular projections. The bacterium was associated with severe and extensive replacement of tissues, but minimal host inflammatory response. Attempts to grow the organism in culture and in embryonated eggs were unsuccessful. Molecular characterisation of the organism placed it as a novel member of the genus Enterococcus. Disease Risk Analyses including this organism should now be factored into conservation management actions and island biosecurity.

Concepts: Species, Infection, Common House Gecko, Lizard, Bacteria, Gekkonidae, Hemidactylus, Gecko

0

Studies on thermoregulation in nocturnal lizards have shown that their thermal regimes are similar to those of diurnal lizards, even though they hide during the daytime and are active mostly at night, when heat sources are very scarce. As a result, nocturnal lizards display an active thermoregulatory behavior consisting of seeking warm shelters to hide during the daytime, using accumulated heat for the nocturnal activity. Based on this information, we hypothesize that when leopard geckos (Eublepharis macularius, Blyth 1954) are presented with the choice of safety in cool shelters or vulnerability in heated open areas, suitable temperature will prevail in importance, i.e. they will trade the advantages provided by the shelter for an exposed, but physiologically necessary heat source. Data on the time juvenile E. macularius spent in shelters, and in open areas along a thermal gradient and under a 12/12 hr photoperiod, from eight individuals confirmed our hypothesis. We found that, not only did they select heat sources over shelters, but, along with the light/dark cycle, temperature may also represent a cue for activity. Additionally we found that substrate moisture plays an important role in shelter preference.

Concepts: Heat transfer, Pet lizards, Thermodynamics, Temperature, Leopard gecko, Gekkonidae, Heat, Eublepharis

0

The gecko adhesion system fascinates biologists and materials scientists alike for its strong, reversible, glue-free, dry adhesion. Understanding the adhesion system’s performance on various surfaces can give clues as to gecko behaviour, as well as towards designing synthetic adhesive mimics. Geckos encounter a variety of surfaces in their natural habitats; tropical geckos, such as Gekko gecko, encounter hard, rough tree trunks as well as soft, flexible leaves. While gecko adhesion on hard surfaces has been extensively studied, little work has been done on soft surfaces. Here, we investigate for the first time the influence of macroscale and nanoscale substrate modulus on whole animal adhesion on two different substrates (cellulose acetate and polydimethylsiloxane) in air and find that across 5 orders of magnitude in macroscale modulus, there is no change in adhesion. On the nanoscale, however, gecko adhesion is shown to depend on substrate modulus. This suggests that low surface-layer modulus may inhibit the gecko adhesion system, independent of other influencing factors such as macroscale composite modulus and surface energy. Understanding the limits of gecko adhesion is vital for clarifying adhesive mechanisms and in the design of synthetic adhesives for soft substrates (including for biomedical applications and wearable electronics).

Concepts: Gekko, Tokay gecko, Gekkonidae, Adhesive, Materials science, Cellulose acetate, Adhesion, Gecko

0

During May and June 2015, four common leaf-tailed geckos, Uroplatus fimbriatus (Schneider), five satanic leaf-tailed geckos, Uroplatus phantasticus (Boulenger), and four mossy leaf-tailed geckos, Uroplatus sikorae Boettger originally collected from Madagascar and housed at the Dallas Zoo, USA, had their faeces examined for coccidian parasites. Eight (62%) geckos were found to be passing oöcysts, including a new eimerian, a new isosporan and a previously described eimerian. Three of four (75%) U. fimbratus (type-host) and one of five (20%) U. phantasticus were infected with Eimeria schneideri n. sp.; oöcysts were subspheroidal to ellipsoidal with a bi-layered wall and measured (mean length × width, L × W) 15.1 × 13.5 µm, with a length/width (L/W) ratio of 1.1. A micropyle and oöcyst residuum were absent but one to many polar granules were present. Sporocysts were ovoidal, 6.9 × 5.3 µm, L/W = 1.3. Stieda, sub-Stieda and para-Stieda bodies were absent. A globular sporocyst residuum was present as dispersed granules. Four of five (80%) U. phantasticus harboured Isospora boulengeri n. sp.; oöcysts were subpheroidal to ellipsoidal with a bi-layered wall and measured 17.3 × 16.0 µm, L/W = 1.1. A micropyle and oöcyst residuum were absent but a polar granule was present. Sporocysts were ellipsoidal, 9.5 × 6.9 µm, L/W = 1.4. Stieda and sub-Stieda bodies were present but a para-Stieda body was absent. A globular sporocyst residuum was present with dispersed granules. In addition, one of four (25%) U. sikorae was infected with an eimerian indistinguishable from Eimeria brygooi Upton & Barnard, 1987, previously reported from Madagascar day gecko, Phelsuma grandis Gray and golddust day gecko, Phelsuma laticauda (Boettger) from Madagascar. These are the first coccidians described from Uroplatus spp.

Concepts: Uroplatus, Apicomplexa, Gekkonidae, Gold dust day gecko, Coccidia, Endemic fauna of Madagascar, Gecko, Phelsuma

0

Dermal injury of the Eublepharis macularius (leopard gecko) often results in a loss of the spotted patterns. The scar is usually well recovered, but the spots and the tubercles may be lost depending on the size and part of the lesion. This report presents a surgical attempting, in which the pigments in the edge of the remaining skin flap are partially preserved to maximally restore the natural pigmentation patterns during the course of dermal regeneration.

Concepts: Plastic surgery, Injury, Pet lizards, Skin, Surgery, Leopard gecko, Gekkonidae, Eublepharis