Discover the most talked about and latest scientific content & concepts.

Concept: Gases


An adult female long-beaked common dolphin Delphinus capensis live-stranded in La Jolla, California, USA, on July 30, 2012 and subsequently died on the beach. Computed tomography and magnetic resonance imaging revealed gas bubble accumulation in the vasculature, organ parenchyma, mandibular fat pads, and subdermal sheath as well as a gas-filled cavity within the liver, mild caudal abdominal effusion, and fluid in the uterus. Gross examination confirmed these findings and also identified mild ulcerations on the palate, ventral skin, and flukes, uterine necrosis, and multifocal parenchymal cavitations in the brain. Histological review demonstrated necrosis and round clear spaces interpreted as gas bubbles with associated bacterial rods within the brain, liver, spleen, and lymph nodes. Anaerobic cultures of the lung, spleen, liver, bone marrow, and abdominal fluid yielded Clostridium perfringens, which was further identified as type A via a multiplex PCR assay. The gas composition of sampled bubbles was typical of putrefaction gases, which is consistent with the by-products of C. perfringens, a gas-producing bacterium. Gas bubble formation in marine mammals due to barotrauma, and peri- or postmortem off-gassing of supersaturated tissues and blood has been previously described. This case study concluded that a systemic infection of C. perfringens likely resulted in production of gas and toxins, causing tissue necrosis.

Concepts: Cancer, Brain, Blood, Medical imaging, Magnetic resonance imaging, Lymphatic system, Clostridium perfringens, Gases


Sauvignon blanc wines are produced under a wide variety of winemaking conditions, some of which include different fruit-ripening levels, cold soaks and the use of fining agents and inert gases. Anecdotal evidence suggests that sensory variations among these wines may have to do with their phenolic composition and concentration. Therefore the aim of this work was to study the effects of different winemaking conditions typically used in Chile on the phenolic composition and concentration of Sauvignon blanc wines.

Concepts: Oenology, Fermentation, Noble gas, Gases, Cabernet Sauvignon, Sauvignon blanc, Chardonnay, Chilean wine


From the structural characteristics of pores evolving from the vacancy, the structure-dependent nature of localized states, and the role of electronic states in the reaction, we elucidate size effects on the chemical reactivity of porous graphene using density functional theory. The coupling of conjugated π electrons of graphene with localized defect states allows for the reduction reaction or adsorption of exhaust gases on the edge atoms. The charge redistribution, ascertained from the coupling response, activates the weak C-C bond states at the corners, facilitating the dissociation of exhaust gas (e.g., NO). The size matching effect makes that the dissociation barrier of NO on the vacancy is smaller than 8.30 kcal/mol; whereas, larger pores only capture NO. Following the coupling-response mechanism, we propose the structural requirements for chemical applications of porous graphene: the shape and size of the pores are comparable in scale with those of purified molecules.

Concepts: Chemical reaction, Molecule, Chemistry, Atom, Nitrogen, Carbon, Gases, Exhaust gas


Honeybees utilise floral odours when foraging for flowers; we investigated whether diesel exhaust pollution could interrupt these floral odour stimuli. A synthetic blend of eight floral chemicals, identified from oilseed rape, was exposed to diesel exhaust pollution. Within one minute of exposure the abundances of four of the chemicals were significantly lowered, with two components rendered undetectable. Honeybees were trained to recognise the full synthetic odour mix; altering the blend, by removing the two chemicals rendered undetectable, significantly reduced the ability of the trained honeybees to recognize the altered odour. Furthermore, we found that at environmentally relevant levels the mono-nitrogen oxide (NOx) fraction of the exhaust gases was a key facilitator of this odour degradation. Such changes in recognition may impact upon a honeybee’s foraging efficiency and therefore the pollination services that they provide.

Concepts: Insect, Catalytic converter, Nitrogen, Pollination, Flower, Bumblebee, Gases, Biodiesel


Rough surfaces immersed under water remain practically dry if the liquid-solid contact is on roughness peaks, while the roughness valleys are filled with gas. Mechanisms that prevent water from invading the valleys are well studied. However, to remain practically dry under water, additional mechanisms need consideration. This is because trapped gas (e.g. air) in the roughness valleys can dissolve into the water pool, leading to invasion. Additionally, water vapor can also occupy the roughness valleys of immersed surfaces. If water vapor condenses, that too leads to invasion. These effects have not been investigated, and are critically important to maintain surfaces dry under water. In this work, we identify the critical roughness scale, below which it is possible to sustain the vapor phase of water and/or trapped gases in roughness valleys - thus keeping the immersed surface dry. Theoretical predictions are consistent with molecular dynamics simulations and experiments.

Concepts: Water, Water vapor, Pressure, Gas, Vapor pressure, Vapor, Evaporation, Gases


Evidence on the short-term effects of ultrafine particles (with diameter<100nm, UFP) on health is still inconsistent. New particles in ambient urban air are the result of direct emissions and also the formation of secondary UFP from gaseous precursors. We segregated UFP into these two components and investigated their impact on daily mortality in three Spanish cities affected by different sources of air pollution.

Concepts: Air pollution, Gases, Vehicles


Facility-level methane emissions were measured at 114 gathering facilities and 16 processing plants in the United States natural gas system. At gathering facilities, the measured methane emission rates ranged from 0.7 to 700 kg per hour (kg/h) (0.6 to 600 standard cubic feet per minute (scfm)). Normalized emissions (as a % of total methane throughput) were less than 1% for 85 gathering facilities and 19 had normalized emissions less than 0.1%. The range of methane emissions rates for processing plants was 3 to 600 kg/h (3 to 524 scfm), corresponding to normalized methane emissions rates <1% in all cases. The distributions of methane emissions, particularly for gathering facilities, are skewed. For example, 30% of gathering facilities contribute 80% of the total emissions. Normalized emissions rates are negatively correlated with facility throughput. The variation in methane emissions also appears driven by differences between inlet and outlet pressure, as well as venting and leaking equipment. Substantial venting from liquids storage tanks was observed at 20% of gathering facilities. Emissions rates at these facilities were, on average, around four times the rates observed at similar facilities without substantial venting.

Concepts: Carbon dioxide, Fluid dynamics, Measurement, Systems of measurement, Natural gas, Methane, Gases, Cubic feet per minute


“Microscopic leaf wetness” means minute amounts of persistent liquid water on leaf surfaces which are invisible to the naked eye. The water is mainly maintained by transpired water vapor condensing onto the leaf surface and to attached leaf surface particles. With an estimated average thickness of less than 1 μm, microscopic leaf wetness is about two orders of magnitude thinner than morning dewfall. The most important physical processes which reduce the saturation vapor pressure and promote condensation are cuticular absorption and the deliquescence of hygroscopic leaf surface particles. Deliquescent salts form highly concentrated solutions. Depending on the type and concentration of the dissolved ions, the physicochemical properties of microscopic leaf wetness can be considerably different from those of pure water. Microscopic leaf wetness can form continuous thin layers on hydrophobic leaf surfaces and in specific cases can act similar to surfactants, enabling a strong potential influence on the foliar exchange of ions. Microscopic leaf wetness can also enhance the dissolution, the emission, and the reaction of specific atmospheric trace gases e.g., ammonia, SO2, or ozone, leading to a strong potential role for microscopic leaf wetness in plant/atmosphere interaction. Due to its difficult detection, there is little knowledge about the occurrence and the properties of microscopic leaf wetness. However, based on the existing evidence and on physicochemical reasoning it can be hypothesized that microscopic leaf wetness occurs on almost any plant worldwide and often permanently, and that it significantly influences the exchange processes of the leaf surface with its neighboring compartments, i.e., the plant interior and the atmosphere. The omission of microscopic water in general leaf wetness concepts has caused far-reaching, misleading conclusions in the past.

Concepts: Water, Physical chemistry, Water vapor, Pressure, Vapor pressure, Vapor, Boiling point, Gases


Strong-field laser excitation of solids can produce extremely nonlinear electronic and optical behaviour. As recently demonstrated, this includes the generation of high harmonics extending into the vacuum-ultraviolet and extreme-ultraviolet regions of the electromagnetic spectrum. High harmonic generation is shown to occur fundamentally differently in solids and in dilute atomic gases. How the microscopic mechanisms in the solid and the gas differ remains a topic of intense debate. Here we report a direct comparison of high harmonic generation in the solid and gas phases of argon and krypton. Owing to the weak van der Waals interaction, rare (noble)-gas solids are a near-ideal medium in which to study the role of high density and periodicity in the generation process. We find that the high harmonic generation spectra from the rare-gas solids exhibit multiple plateaus extending well beyond the atomic limit of the corresponding gas-phase harmonics measured under similar conditions. The appearance of multiple plateaus indicates strong interband couplings involving multiple single-particle bands. We also compare the dependence of the solid and gas harmonic yield on laser ellipticity and find that they are similar, suggesting the importance of electron-hole recollision in these solids. This implies that gas-phase methods such as polarization gating for attosecond pulse generation and orbital tomography could be realized in solids.

Concepts: Fundamental physics concepts, Temperature, Solid, Liquid, Gas, Noble gas, Gases, Ideal gas law


We report on conductometric gas sensors based on single CuO nanowires and compare the carbon monoxide (CO) sensing properties of pristine as well as Pd nanoparticle decorated devices in humid atmosphere. Magnetron sputter inert gas aggregation combined with a quadrupole mass filter for cluster size selection was used for single-step Pd nanoparticle deposition in the soft landing regime. Uniformly dispersed, crystalline Pd nanoparticles with size-selected diameters around 5 nm were deposited on single CuO nanowire devices in a four point configuration. During gas sensing experiments in humid synthetic air, significantly enhanced CO response for CuO nanowires decorated with Pd nanoparticles was observed, which validates that magnetron sputter gas aggregation is very well suited for the realization of nanoparticle-functionalized sensors with improved performance.

Concepts: Carbon dioxide, Nanoparticle, Carbon, Nanotechnology, Carbon monoxide, Colloidal crystal, Gases, Cluster