Discover the most talked about and latest scientific content & concepts.

Concept: Gamut


Metal halides perovskites, such as hybrid organic-inorganic CH3NH3PbI3, are newcomer optoelectronic materials that have attracted enormous attention as solution-deposited absorbing layers in solar cells with power conversion efficiencies reaching 20%. Herein we demonstrate a new avenue for halide perovskties by designing perovskite-based quantum dot materials. We have synthesized monodisperse, colloidal nanocubes (4-15 nm edge lengths) of fully inorganic cesium lead halide perovskites (CsPbX3, X=Cl, Br, I or mixed halide systems Cl/Br and Br/I) using inexpensive commercial precursors. Through compositional modulations and quantum size-effects, the bandgap energies and emission spectra are readily tunable over the entire visible spectral region of 410-700 nm. The photoluminescence of CsPbX3 nanocrystals is characterized by narrow emission line-widths of 12-42 nm, wide color gamut covering up to 140% of the NTSC color standard, high quantum yields of up to 90% and radiative lifetimes in the range of 4-29 ns. The compelling combination of enhanced optical properties and chemical robustness makes CsPbX3 nanocrystals appealing for optoelectronic applications, particularly for blue and green spectral regions (410-530 nm), where typical metal chalcogenide-based quantum dots suffer from photodegradation.

Concepts: Quantum dot, Color, Solar cell, Light-emitting diode, Color space, Band gap, Color theory, Gamut


Tachistoscopes allow brief visual stimulation delivery, which is crucial for experiments in which subliminal presentation is required. Up to now, tachistoscopes have had shortcomings with respect to timing accuracy, reliability, and flexibility of use. Here, we present a new and inexpensive two-channel tachistoscope that allows for exposure durations in the submillisecond range with an extremely high timing accuracy. The tachistoscope consists of two standard liquid-crystal display (LCD) monitors of the light-emitting diode (LED) backlight type, a semipermeable mirror, a mounting rack, and an experimental personal computer (PC). The monitors have been modified to provide external access to the LED backlights, which are controlled by the PC via the standard parallel port. Photodiode measurements confirmed reliable operation of the tachistoscope and revealed switching times of 3 μs. Our method may also be of great advantage in single-monitor setups, in which it allows for manipulating the stimulus timing with submillisecond precision in many experimental situations. Where this is not applicable, the monitor can be operated in standard mode by disabling the external backlight control instantaneously.

Concepts: Light-emitting diode, Liquid crystal display, Diode, Personal computer, Cathode ray tube, Backlight, Gamut, Parallel port


Light emitting diode (LED)-backlit liquid crystal displays (LCDs) hold the promise of improving image quality while reducing the energy consumption with signal-dependent local dimming. However, most existing local dimming algorithms are mostly motivated by simple implementation, and they often lack concern for visual quality. To fully realize the potential of LED-backlit LCDs and reduce the artifacts that often occur in current systems, we propose a novel local dimming technique that can achieve the theoretical highest fidelity of intensity reproduction in either l(1) or l(2) metrics. Both the exact and fast approximate versions of the optimal local dimming algorithm are proposed. Simulation results demonstrate superior performances of the proposed algorithm in terms of visual quality and power consumption.

Concepts: Energy, Light-emitting diode, Lighting, Liquid crystal display, Liquid crystal, Cathode ray tube, Backlight, Gamut


‘The dress’ is a peculiar photograph: by themselves the dress' pixels are brown and blue, colors associated with natural illuminants [1], but popular accounts (#TheDress) suggest the dress appears either white/gold or blue/black [2]. Could the purported categorical perception arise because the original social-media question was an alternative-forced-choice? In a free-response survey (N = 1401), we found that most people, including those naïve to the image, reported white/gold or blue/black, but some said blue/brown. Reports of white/gold over blue/black were higher among older people and women. On re-test, some subjects reported a switch in perception, showing the image can be multistable. In a language-independent measure of perception, we asked subjects to identify the dress' colors from a complete color gamut. The results showed three peaks corresponding to the main descriptive categories, providing additional evidence that the brain resolves the image into one of three stable percepts. We hypothesize that these reflect different internal priors: some people favor a cool illuminant (blue sky), discount shorter wavelengths, and perceive white/gold; others favor a warm illuminant (incandescent light), discount longer wavelengths, and see blue/black. The remaining subjects may assume a neutral illuminant, and see blue/brown. We show that by introducing overt cues to the illumination, we can flip the dress color.

Concepts: Light, Perception, Color, Qualia, Color space, Color theory, International Commission on Illumination, Gamut


Assessing the coverage of the color space of Recommendation ITU-R BT.2020 (Rec. 2020) has become increasingly important in the design of wide-gamut displays, and an appropriate metric for measuring the display gamut size is urgently needed. Display manufactures calculate the area ratios of their displays' RGB triangles to a standard RGB triangle in the CIE 1931 xy or CIE 1976 u'v' chromaticity diagram to indicate the displays' relative gamut size. However, they typically fail to mention which of the two diagrams the metric is based on. This paper shows that the ratios calculated in the two chromaticity diagrams are highly inconsistent, and that the Rec. 2020 area-coverage ratios for wide-gamut displays in the xy diagram are much more correlated to the Rec. 2020 volume-coverage ratios in some color-appearance spaces than the Rec. 2020 area-coverage ratios in the u'v' diagram. This paper recommends the use of the xy diagram for area-coverage ratio calculations for wide-gamut displays.

Concepts: Color, Color space, Color theory, CIE 1931 color space, Lab color space, RGB color space, Gamut, Luminance


When pollinators use flower color to locate food sources, a distinct color can serve as a reproductive barrier against co-flowering species. This anti-interference function of flower color may result in a community assembly of plant species displaying mutually different flower colors. However, such color dispersion is not ubiquitous, suggesting a variable selection across communities and existence of some opposing factors. We conducted a 30-week study in a plant community and measured the floral reflectances of 244 species. The reflectances were evaluated in insect color spaces (bees, swallowtails, and flies), and the dispersion was compared with random expectations. We found that co-existing colors were overdispersed for each analyzed pollinator type, and this overdispersion was statistically significant for bees. Furthermore, we showed that exclusion of 32 aliens from the analysis significantly increased the color dispersion of native flowers in every color space. This result indicated that aliens disturbed a native plant-pollinator network via similarly colored flowers. Our results demonstrate the masking effects of aliens in the detection of color dispersion of native flowers and that variations in pollinator vision yield different outcomes. Our results also support the hypothesis that co-flowering species are one of the drivers of color diversification and affect the community assembly.

Concepts: Color, Pollination, Flower, Pollinator decline, Pollen, Bee, Color space, Gamut


As nanofabrication technology progresses, the emerging metasurface has offered unique opportunities for holography, such as an increased data capacity and the realization of polarization-sensitive functionality. Multicolor three-dimensional (3D) meta-hologram imaging is one of the most pursued applications for meta-hologram not yet realized. How to reduce the cross-talk among different colors in broad bandwidth designs is a critical question. On the basis of the off-axis illumination method, we develop a novel way to overcome the cross-talk limitation and achieve multicolor meta-holography with a single type of plasmonic pixel. With this method, the usable data capacity can also be improved. It not only leads to a remarkable image quality, with a signal-to-noise ratio (SNR) five times better than that of the previous meta-hologram designs, but also paves the way to new meta-hologram devices, which mark an advance in the field of meta-holography. For example, a seven-color meta-hologram can be fabricated with a color gamut 1.39 times larger than that of the red, green, and blue (RGB) design. For the first time, a full-color meta-holographic image in the 3D space is also experimentally demonstrated. Our approach to expanding the information capacity of the meta-hologram is unique, which extends broad applications in data storage, security, and authentication.

Concepts: Color, Red, Liquid crystal display, Color space, Signal-to-noise ratio, Color theory, Baseband, Gamut


Chromatic devices such as flat panel displays could, in principle, be substantially improved by incorporating aluminum plasmonic nanostructures instead of conventional chromophores that are susceptible to photo-bleaching. In nanostructure form, aluminum is capable of producing colors that span the visible region of the spectrum while contributing exceptional robustness, low cost, and streamlined manufacturability compatible with semiconductor manufacturing technology. However, individual aluminum nanostructures alone lack the vivid chromaticity of currently available chromophores because of the strong damping of the aluminum plasmon resonance in the visible region of the spectrum. In recent work, we showed that pixels formed by periodic arrays of Al nanostructures yield far more vivid coloration than the individual nanostructures. This progress was achieved by exploiting far-field diffractive coupling, which significantly suppresses the scattering response on the long-wavelength side of plasmonic pixel resonances. In the present work, we show that by utilizing another collective coupling effect, Fano interference, it is possible to substantially narrow the short-wavelength side of the pixel spectral response. Together, these two complementary effects provide unprecedented control of plasmonic pixel spectral lineshape, resulting in aluminum pixels with far more vivid, monochromatic coloration across the entire RGB color gamut than previously attainable. We further demonstrate that pixels designed in this manner can be used directly as switchable elements in liquid crystal displays and determine the minimum and optimal numbers of nanorods required in an array to achieve good color quality and intensity.

Concepts: Color, Liquid crystal display, RGB color model, Color space, Color theory, Pixel, Gamut, Plasma display


Animal coloration is a poorly-understood aspect of phenotypic variability. Here I expand initial studies of the colour gamut of birds by providing the first quantitative description of the colour variation of an entire avifauna: Australian landbirds (555 species). The colour of Australian birds occupies a small fraction (19%) of the entire possible colour space and colour variation is extremely uneven. Most colours are unsaturated, concentrated in the centre of colour space and based on the deposition of melanins. Other mechanisms of colour production are less common but account for larger portions of colour space and for most saturated colours. Male colours occupy 45-25% more colour space than female colours, indicating that sexual dichromatism translates into a broader range of male colours. Male-exclusive colours are often saturated, at the edge of chromatic space, and have most likely evolved for signalling. While most clades of birds occupy expected or lower-than-expected colour volumes, parrots and cockatoos (Order Psittaciformes) occupy a much larger volume than expected. This uneven distribution of colour variation across mechanisms of colour production, sexes and clades is probably shared by avifaunas in other parts of the world, but this remains to be tested with comparable data.

Concepts: Evolution, Bird, Sex, Color, Color space, Color theory, Parrot, Gamut


The performance of perovskite solar cells has been progressing over the last few years and efficiency is likely to continue to increase. However, a negative aspect for the integration of perovskite solar cells in the built environment is that the colour gamut available in these materials is very limited and does not cover the green-to-blue region of the visible spectrum, which has been a big selling point for organic photovoltaics. Here we integrate a porous photonic crystal (PC) scaffold within the photoactive layer of an opaque perovskite solar cell following a bottom-up approach employing inexpensive and scalable liquid processing techniques. The photovoltaic devices presented herein show high efficiency with tuneable colour across the visible spectrum. This now imbues the perovskite solar cells with highly desirable properties for cladding in the built environment, and encourages design of sustainable colourful buildings and iridescent electric vehicles as future power generation sources.

Concepts: Color, Solar cell, Photovoltaics, Photovoltaic module, Band gap, Photovoltaic array, Solar tracker, Gamut