Discover the most talked about and latest scientific content & concepts.

Concept: Full genome sequencing


Dipterous fly larvae (maggots) are frequently collected from a corpse during a criminal investigation. Previous studies showed that DNA analysis of the gastrointestinal contents of maggots might be used to reveal the identity of a victim. However, this approach has not been used to date in legal investigations, and thus its practical usefulness is unknown. A badly burned body was discovered with its face and neck colonized by fly larvae. Given the condition of the body, identification was not possible. Short tandem repeat (STR) typing was performed using the gastrointestinal contents of maggots collected from the victim and was compared to STR profiles obtained from the alleged father. The probability of paternity was 99.685%. Thus, this comparative DNA test enabled the conclusive identification of the remains. This is the first reported case of analysis of human DNA isolated from the gastrointestinal tract of maggots used to identify a victim in a criminal case.

Concepts: DNA, Full genome sequencing, Identification, Short tandem repeat, Fly, DNA profiling, National DNA database, Combined DNA Index System


Background. In recent years, there has been an explosion in the number of technical and medical diagnostic platforms being developed. This has greatly improved our ability to more accurately, and more comprehensively, explore and characterize human biological systems on the individual level. Large quantities of biomedical data are now being generated and archived in many separate research and clinical activities, but there exists a paucity of studies that integrate the areas of clinical neuropsychiatry, personal genomics and brain-machine interfaces. Methods. A single person with severe mental illness was implanted with the Medtronic Reclaim(®) Deep Brain Stimulation (DBS) Therapy device for Obsessive Compulsive Disorder (OCD), targeting his nucleus accumbens/anterior limb of the internal capsule. Programming of the device and psychiatric assessments occurred in an outpatient setting for over two years. His genome was sequenced and variants were detected in the Illumina Whole Genome Sequencing Clinical Laboratory Improvement Amendments (CLIA)-certified laboratory. Results. We report here the detailed phenotypic characterization, clinical-grade whole genome sequencing (WGS), and two-year outcome of a man with severe OCD treated with DBS. Since implantation, this man has reported steady improvement, highlighted by a steady decline in his Yale-Brown Obsessive Compulsive Scale (YBOCS) score from ∼38 to a score of ∼25. A rechargeable Activa RC neurostimulator battery has been of major benefit in terms of facilitating a degree of stability and control over the stimulation. His psychiatric symptoms reliably worsen within hours of the battery becoming depleted, thus providing confirmatory evidence for the efficacy of DBS for OCD in this person. WGS revealed that he is a heterozygote for the p.Val66Met variant in BDNF, encoding a member of the nerve growth factor family, and which has been found to predispose carriers to various psychiatric illnesses. He carries the p.Glu429Ala allele in methylenetetrahydrofolate reductase (MTHFR) and the p.Asp7Asn allele in ChAT, encoding choline O-acetyltransferase, with both alleles having been shown to confer an elevated susceptibility to psychoses. We have found thousands of other variants in his genome, including pharmacogenetic and copy number variants. This information has been archived and offered to this person alongside the clinical sequencing data, so that he and others can re-analyze his genome for years to come. Conclusions. To our knowledge, this is the first study in the clinical neurosciences that integrates detailed neuropsychiatric phenotyping, deep brain stimulation for OCD and clinical-grade WGS with management of genetic results in the medical treatment of one person with severe mental illness. We offer this as an example of precision medicine in neuropsychiatry including brain-implantable devices and genomics-guided preventive health care.

Concepts: Medicine, Gene, Full genome sequencing, Mental disorder, Psychiatry, Mental illness, Body dysmorphic disorder, Personal genomics


Comparison of DNA profiles is often used in verifying the identification of deceased human beings when other easier, quicker, and less expensive means to identification are not possible. Fifty-five adult subjects divided into 3 groups provided a used toothbrush along with a small bloodstain control for DNA analysis and comparison. Results indicate that there is no significant difference in the quantity and quality of DNA recovered from a toothbrush that has been used for 1 month versus 3 months versus random periods. The results of this study confirm earlier conclusions that a used toothbrush is a reliable source of antemortem DNA from a putative decedent. The use of aviation snips to remove a small portion of the toothbrush head provides an easy, inexpensive method of obtaining a sample for DNA extraction. The authors recommend this method as a standardized technique for use in forensic DNA laboratories.

Concepts: DNA, Molecular biology, Full genome sequencing, Identification, DNA profiling, National DNA database, Combined DNA Index System, Thomas Jefferson


The Illumina DNA sequencing platform generates accurate but short reads, which can be used to produce accurate but fragmented genome assemblies. Pacific Biosciences and Oxford Nanopore Technologies DNA sequencing platforms generate long reads that can produce complete genome assemblies, but the sequencing is more expensive and error-prone. There is significant interest in combining data from these complementary sequencing technologies to generate more accurate “hybrid” assemblies. However, few tools exist that truly leverage the benefits of both types of data, namely the accuracy of short reads and the structural resolving power of long reads. Here we present Unicycler, a new tool for assembling bacterial genomes from a combination of short and long reads, which produces assemblies that are accurate, complete and cost-effective. Unicycler builds an initial assembly graph from short reads using the de novo assembler SPAdes and then simplifies the graph using information from short and long reads. Unicycler uses a novel semi-global aligner to align long reads to the assembly graph. Tests on both synthetic and real reads show Unicycler can assemble larger contigs with fewer misassemblies than other hybrid assemblers, even when long-read depth and accuracy are low. Unicycler is open source (GPLv3) and available at

Concepts: DNA, Gene, Molecular biology, Human genome, Genome, DNA sequencing, Full genome sequencing, Assembly language


Traditional forensic DNA interpretation methods are restricted as they are unable to deal completely with complex low level or mixed DNA profiles. This type of data has become more prevalent as DNA typing technologies become more sensitive. In addition they do not make full use of the information available in peak heights. Existing methods of interpretation are often described as binary which describes the fact that the probability of the evidence is assigned as 0 or 1 (hence binary) (see for example [1] at 7.3.3). These methods are being replaced by more advanced interpretation methods such as continuous models. In this paper we describe a series of models that can be used to calculate expected values for allele and stutter peak heights, and their ratio SR. This model could inform methods which implement a continuous method for the interpretation of DNA profiling data.

Concepts: DNA, Full genome sequencing, DNA profiling, National DNA database, Combined DNA Index System, Alec Jeffreys


While the analysis of human DNA has been the focus of large-scale collaborative endeavors, non-human forensic DNA analysis has not benefited from the same funding streams and coordination of effort. Consequently, the development of standard marker panels, allelic ladders and allele-specific sequence data comparable to those established for human forensic genetics has lagged. To meet that need for domestic dogs, we investigated sequence data provided by the published 7.6X dog genome for novel short tandem repeat markers that met our criteria for sensitivity, stability, robustness, polymorphic information content, and ease of scoring. Fifteen unlinked tetranucleotide repeat markers were selected from a pool of 3113 candidate markers and assembled with a sex-linked marker into a multiplex capable of generating a full profile with as little as 60pg of nuclear DNA. An accompanying allelic ladder was assembled and sequenced to obtain detailed repeat motif data. Validation was carried out according to SWGDAM guidelines, and the DogFiler panel has been integrated into forensic casework and accepted in courts across the U.S. Applying various formulae for calculating random match probabilities for inbred populations, estimates for this panel of markers have proven to be comparable to those obtained in human forensic genetics. The DogFiler panel and the associated allelic ladder represent the first published non-human profiling system to fully address all SWGDAM recommendations.

Concepts: DNA, Genetics, Molecular biology, Full genome sequencing, DNA profiling, National DNA database, Combined DNA Index System, Thomas Jefferson


We report metrics from complete genome capture of nuclear DNA from extinct mammoths using biotinylated RNAs transcribed from an Asian elephant DNA extract. Enrichment of the nuclear genome ranged from 1.06- to 18.65-fold, to an apparent maximum threshold of about 80% on-target. This projects an order of magnitude less costly complete genome sequencing from long-dead organisms, even when a reference genome is unavailable for bait design.

Concepts: DNA, Gene, Molecular biology, Genome, DNA sequencing, Full genome sequencing, DNA profiling, Shotgun sequencing


White spruce (Picea glauca) is a dominant conifer of the boreal forests of North America, and providing genomics resources for this commercially valuable tree will help improve forest management and conservation efforts. Sequencing and assembling the large and highly repetitive spruce genome though pushes the boundaries of the current technology. Here, we describe a whole-genome shotgun sequencing strategy using two Illumina sequencing platforms and an assembly approach using the ABySS software. We report a 20.8 giga base pairs draft genome in 4.9 million scaffolds, with a scaffold N50 of 20 356 bp. We demonstrate how recent improvements in the sequencing technology, especially increasing read lengths and paired end reads from longer fragments have a major impact on the assembly contiguity. We also note that scalable bioinformatics tools are instrumental in providing rapid draft assemblies. AVAILABILITY: The Picea glauca genome sequencing and assembly data are available through NCBI (Accession#: ALWZ0100000000 PID: PRJNA83435). CONTACT: SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

Concepts: DNA, Molecular biology, Human Genome Project, DNA sequencing, Full genome sequencing, Spruce, Shotgun sequencing, Sequence assembly


DNA fingerprinting, one of the great discoveries of the late 20th century, has revolutionized forensic investigations. This review briefly recapitulates 30 years of progress in forensic DNA analysis which helps to convict criminals, exonerate the wrongly accused, and identify victims of crime, disasters, and war. Current standard methods based on short tandem repeats (STRs) as well as lineage markers (Y chromosome, mitochondrial DNA) are covered and applications are illustrated by casework examples. Benefits and risks of expanding forensic DNA databases are discussed and we ask what the future holds for forensic DNA fingerprinting.

Concepts: DNA, Full genome sequencing, Identification, DNA profiling, National DNA database, Combined DNA Index System, Alec Jeffreys


Rapid advancements in sequencing technologies along with falling costs present widespread opportunities for microbiome studies across a vast and diverse array of environments. These impressive technological developments have been accompanied by a considerable growth in the number of methodological variables, including sampling, storage, DNA extraction, primer pairs, sequencing technology, chemistry version, read length, insert size, and analysis pipelines, amongst others. This increase in variability threatens to compromise both the reproducibility and the comparability of studies conducted. Here we perform the first reported study comparing both amplicon and shotgun sequencing for the three leading next-generation sequencing technologies. These were applied to six human stool samples using Illumina HiSeq, MiSeq and Ion PGM shotgun sequencing, as well as amplicon sequencing across two variable 16S rRNA gene regions. Notably, we found that the factor responsible for the greatest variance in microbiota composition was the chosen methodology rather than the natural inter-individual variance, which is commonly one of the most significant drivers in microbiome studies. Amplicon sequencing suffered from this to a large extent, and this issue was particularly apparent when the 16S rRNA V1-V2 region amplicons were sequenced with MiSeq. Somewhat surprisingly, the choice of taxonomic binning software for shotgun sequences proved to be of crucial importance with even greater discriminatory power than sequencing technology and choice of amplicon. Optimal N50 assembly values for the HiSeq was obtained for 10 million reads per sample, whereas the applied MiSeq and PGM sequencing depths proved less sufficient for shotgun sequencing of stool samples. The latter technologies, on the other hand, provide a better basis for functional gene categorisation, possibly due to their longer read lengths. Hence, in addition to highlighting methodological biases, this study demonstrates the risks associated with comparing data generated using different strategies. We also recommend that laboratories with particular interests in certain microbes should optimise their protocols to accurately detect these taxa using different techniques.

Concepts: DNA, Scientific method, Molecular biology, Ribosomal RNA, DNA sequencing, Full genome sequencing, 16S ribosomal RNA, Technology