Discover the most talked about and latest scientific content & concepts.

Concept: Frost


In-plane frost growth on chilled hydrophobic surfaces is an inter-droplet phenomenon, where frozen droplets harvest water from neighboring supercooled liquid droplets to grow ice bridges that propagate across the surface in a chain reaction. To date, no surface has been able to passively prevent the in-plane growth of ice bridges across the population of supercooled condensate. Here, we demonstrate that when the separation between adjacent nucleation sites for supercooled condensate is properly controlled with chemical micropatterns prior to freezing, inter-droplet ice bridging can be slowed and even halted entirely. Since the edge-to-edge separation between adjacent supercooled droplets decreases with growth time, deliberately triggering an early freezing event to minimize the size of nascent condensation was also necessary. These findings reveal that inter-droplet frost growth can be passively suppressed by designing surfaces to spatially control nucleation sites and by temporally controlling the onset of freezing events.

Concepts: Melting point, Frost, Control, Freezing rain, Superheating, Supercooling, Liquid, Nucleation


Antifogging coatings with hydrophilic or even superhydrophilic wetting behavior have received significant attention due to their ability to reduce light scattering by film-like condensation. However, under aggressive fogging conditions, these surfaces may exhibit frost formation or excess and non-uniform water condensation, which results in poor optical performance of the coating. In this paper, we show that a zwitter-wettable surface, a surface that has the ability to rapidly absorb molecular water from the environment while simultaneously appearing hydrophobic when probed with water droplets, can be prepared by using hydrogen-bonding assisted Layer-by-Layer (LbL) assembly of poly(vinyl alcohol)(PVA) and poly(acrylic acid)(PAA). An additional step of functionalizing the nano-blended PVA/PAA multilayer with poly(ethylene glycol methyl ether)(PEG) segments produced a significantly enhanced antifog and frost resistant behavior. The addition of the PEG segments was needed to further increase the non-freezing water capacity of the multilayer film. The desirable high optical quality of these thin films arises from the nanoscale control of the macromolecular complexation process that is afforded by the LbL processing scheme. An experimental protocol that not only allows for the exploration of a variety of aggressive antifogging challenges but also enables quantitative analysis of the antifogging performance via real-time monitoring of transmission levels as well as image distortion is also described.

Concepts: Molecule, Titanium dioxide, Fog, Optics, Anti-fog, Wetting, Frost, Surface tension


Functional attributes determine the survival and growth of planted seedlings in reforestation projects. Nitrogen (N) and water are important resources in the cultivation of forest species, which have a strong effect on plant functional traits. We analyzed the influence of N nutrition on drought acclimation of Pinus pinea L. seedlings. Specifically, we addressed if high N fertilization reduces drought and frost tolerance of seedlings and whether drought hardening reverses the effect of high N fertilization on stress tolerance. Seedlings were grown under two N fertilization regimes (6 and 100 mg N per plant) and subjected to three drought-hardening levels (well-watered, moderate and strong hardening). Water relations, gas exchange, frost damage, N concentration and growth at the end of the drought-hardening period, and survival and growth of seedlings under controlled xeric and mesic outplanting conditions were measured. Relative to low-N plants, high-N plants were larger, had higher stomatal conductance (27%), residual transpiration (11%) and new root growth capacity and closed stomata at higher water potential. However, high N fertilization also increased frost damage (24%) and decreased plasmalemma stability to dehydration (9%). Drought hardening reversed to a great extent the reduction in stress tolerance caused by high N fertilization as it decreased frost damage, stomatal conductance and residual transpiration by 21, 31 and 24%, respectively, and increased plasmalemma stability to dehydration (8%). Drought hardening increased tissue non-structural carbohydrates and N concentration, especially in high-fertilized plants. Frost damage was positively related to the stability of plasmalemma to dehydration (r = 0.92) and both traits were negatively related to the concentration of reducing soluble sugars. No differences existed between moderate and strong drought-hardening treatments. Neither N nutrition nor drought hardening had any clear effect on seedling performance under xeric outplanting conditions. However, fertilization increased growth under mesic conditions, whereas drought hardening decreased growth. We conclude that drought hardening and N fertilization applied under typical container nursery operational conditions exert opposite effects on the physiological stress tolerance of P. pinea seedlings. While drought hardening increases overall stress tolerance, N nutrition reduces it and yet has no effect on the drought acclimation capacity of seedlings.

Concepts: Frost, Plant, Nitrogen, Nutrition, Metabolic syndrome, Seed, Water, Plant physiology


We estimated the stable isotopic composition of water from the subglacial Lake Vostok using two different sets of samples: (1) water frozen on the drill bit immediately after the first lake unsealing and (2) water frozen in the borehole after the unsealing and re-drilled one year later. The most reliable values of the water isotopic composition are: -59.0 ± 0.3 ‰ for oxygen-18, -455 ± 1 ‰ for deuterium and 17 ± 1 ‰ for d-excess. This result is also confirmed by the modelling of isotopic transformations in the water which froze in the borehole, and by a laboratory experiment simulating this process. A comparison of the newly obtained water isotopic composition with that of the lake ice (-56.2 ‰ for oxygen-18, -442.4 ‰ for deuterium and 7.2 ‰ for d-excess) leads to the conclusion that the lake ice is very likely formed in isotopic equilibrium with water. In turn, this means that ice is formed by a slow freezing without formation of frazil ice crystals and/or water pockets. This conclusion agrees well with the observed physical and chemical properties of the lake’s accreted ice. However, our estimate of the water’s isotopic composition is only valid for the upper water layer and may not be representative for the deeper layers of the lake, so further investigations are required.

Concepts: Frost, Chemistry, Water cycle, Lake Vostok, Frazil ice, Subglacial lake, Ice, Antarctica


With lengthening growing seasons but increased temperature variability under climate change, frost damage to plants may remain a risk and could be exacerbated by poleward planting of warm-adapted seed sources. Here, we study cold adaptation of tree populations in a wide-ranging coniferous species in western North America to inform limits to seed transfer. Using tree-ring signatures of cold damage from common garden trials designed to study genetic population differentiation, we find opposing geographic clines for spring frost and fall frost damage. Provenances from northern regions are sensitive to spring frosts, while the more productive provenances from central and southern regions are more susceptible to fall frosts. Transferring the southern, warm-adapted genotypes northward causes a significant loss of growth and a permanent rank change after a spring frost event. We conclude that cold adaptation should remain an important consideration when implementing seed transfers designed to mitigate harmful effects of climate change.

Concepts: Season, Pinophyta, Weather, Tree, Genetics, Frost, North America, Plant


Ice formation is a catastrophic problem affecting our daily life in a number of ways. At present, deicing methods are costly, inefficient, and environmentally unfriendly. Recently, the use of superhydrophobic surfaces has been suggested as a potential passive anti-icing method. However, no surface is able to repel frost formation at a very cold temperature. In this work, we demonstrated the abilities of spatial control of ice formation and confinement of ice-stacking direction. The control and confinement were achieved by manipulating local free energy barrier for frosting. The v-shaped microgroove patterned surface, which possessed the abilities, exhibited the best anti-icing and deicing performances among the studied surfaces. The insight of this study can be applied to alleviate the impact of icing on our daily life and in many industrial systems.

Concepts: Water, Ice, Frost, Energy, Deicing, Cold, Temperature, Entropy


The hydrophobicity and anti-icing performance of the surfaces of some artificial hydrophobic coatings degraded after several icing and de-icing cycles. In this paper, the frost formation on the surfaces of butterfly wings from ten different species was observed, and the contact angles were measured after 0 to 6 frosting/defrosting cycles. The results show that no obvious changes in contact angle for the butterfly wing specimens were not obvious during the frosting/defrosting process. Further, the conclusion was inferred that the topography of the butterfly wing surface forms a special space structure which has a larger space inside that can accommodate more frozen droplets; this behavior prevents destruction of the structure. The findings of this study may provide a basis and new concepts for the design of novel industrially important surfaces to inhibit frost/ice growth, such as durable anti-icing coatings, which may decrease or prevent the socio-economic loss.

Concepts: Hydrophobe, Differential geometry, Chemical processes, Surface, Deicing, Frost, Butterfly, Angle


Drought and frosts are major determinants of plant functioning and distribution. Both stresses can cause xylem embolism and foliage damage. The objective of this study was to analyse if the distribution of six common pine species along latitudinal and altitudinal gradients in Europe is related to their interspecific differences in frost tolerance and to the physiological mechanisms underlying species-specific frost tolerance. We also evaluate if frost tolerance depends on plant water status. We studied survival to a range of freezing temperatures in 2-year-old plants and assessed the percentage loss of hydraulic conductivity (PLC) due xylem embolism formation and foliage damage determined by needle electrolyte leakage (EL) after a single frost cycle to -15 °C and over a range of predawn water potential (ψpd) values. Species experiencing cold winters in their range (Pinus nigra J.F. Arnold, Pinus sylvestris L. and Pinus uncinata Raymond ex A. DC.) had the highest frost survival rates and lowest needle EL and soluble sugar (SS) concentration. In contrast, the pines inhabiting mild or cool winter locations (especially Pinus halepensis Mill. and Pinus pinea L. and, to a lesser extent, Pinus pinaster Ait.) had the lowest frost survival and highest needle EL and SS values. Freezing-induced PLC was very low and differences among species were not related to frost damage. Reduction in ψpd decreased leaf frost damage in P. pinea and P. sylvestris, increased it in P. uncinata and had a neutral effect on the rest of the species. This study demonstrates that freezing temperatures are a major environmental driver for pine distribution and suggests that interspecific differences in leaf frost sensitivity rather than vulnerability to freezing-induced embolism or SS explain pine juvenile frost survival.

Concepts: Freezing, Least concern plants, Fern, Frost, Scots Pine, Pinus, Pine, Pinus classification


A long controversy of ice lensing exists in the research of frost heave. By elucidating the mechanical and thermodynamic equilibria at the interface, the thermodynamics of the water/ice interface is revealed from macroscale to microscale for the freezing of colloidal suspensions. The application of the Clapeyron equation is confirmed both at macroscale to microscale via curvature effect. The origin of ice lensing/banding can be initialized from the growth of pore ice in the interpretation of thermodynamics at the interface, even without the traditional mechanical analyses. It is also proposed that the packing status of the porous structure in the particle layer ahead of the water/ice interface determines the ice lensing behaviors. The results presented here show different scenarios compared with previous theoretical investigations of frost heave, and may shed light on the researches of this area.

Concepts: Matter, Mechanical engineering, Frost, Physics, Chemical engineering, Atmospheric thermodynamics, Thermodynamics, Colloid


Superchilling is an attractive technique for preservation of muscle foods which freezes part of the water and insulate the food products from temperature fluctuations thereby enhancing the shelf-life during storage, transportation and retailing. Superchilling process synergistically improves the product shelf-life when used in combination with vacuum or modified atmospheric packaging. The shelf-life of muscle foods was reported to be increased by 1.5 to 4.0 times relative to traditional chilling technique. Advantages of superchilling and its ability to maintain the freshness of muscle foods over freezing has been discussed and its potential for Industrial application is highlighted. Present review also unravel the mechanistic bases for ice-crystal formation during superchilling and measures to ameliorate the drip loss. The future challenges especially automation in superchilling process for large scale Industrial application is presented.

Concepts: Frost, Supermarket, Freezing, Food safety, Future, Energy, Food, Food preservation