Discover the most talked about and latest scientific content & concepts.

Concept: Fracture mechanics


During the lifetime of a flying insect, its wings are subjected to mechanical forces and deformations for millions of cycles. Defects in the micrometre thin membranes or veins may reduce the insect’s flight performance. How do insects prevent crack related material failure in their wings and what role does the characteristic vein pattern play? Fracture toughness is a parameter, which characterises a material’s resistance to crack propagation. Our results show that, compared to other body parts, the hind wing membrane of the migratory locust S. gregaria itself is not exceptionally tough (1.04±0.25 MPa√m). However, the cross veins increase the wing’s toughness by 50% by acting as barriers to crack propagation. Using fracture mechanics, we show that the morphological spacing of most wing veins matches the critical crack length of the material (1132 µm). This finding directly demonstrates how the biomechanical properties and the morphology of locust wings are functionally correlated in locusts, providing a mechanically ‘optimal’ solution with high toughness and low weight. The vein pattern found in insect wings thus might inspire the design of more durable and lightweight artificial ‘venous’ wings for micro-air-vehicles. Using the vein spacing as indicator, our approach might also provide a basis to estimate the wing properties of endangered or extinct insect species.

Concepts: Insect wing, Blood, Orthoptera, Fracture, Fracture mechanics, Locust, Fracture toughness, Insect


Biological materials with hierarchically laminated structures usually exhibit a good synergy between strength and fracture toughness. Here, we show that a bio-inspired (polyelectrolyte (PE)/TiO2)4 nanolayered composite with a thickness ratio of TiO2 and amorphous PE layers of about 1.1 has been prepared successfully on Si substrates by layer-by-layer self-assembly and chemical bath deposition methods. Microstructures of the nanolayered composite were investigated by scanning electron microscopy, secondary ion mass spectroscopy, and high-resolution transmission microscopy. Mechanical performance of the composite was characterized by instrumented indentation. The composite consisting of 17.9-nm-thick nanocrystalline TiO2 and 16.4-nm-thick amorphous PE layers has a strength of about 245 MPa, which is close to that of shells, while the fracture toughness of the composite, KIC = 1.62 +/- 0.30 MPa . m1/2, is evidently higher than that of the bulk TiO2. A possible strategy to build the composite at nanoscale for high mechanical performance was addressed.

Concepts: Transmission electron microscopy, Electron microscope, Secondary ion mass spectrometry, Fracture toughness, Scanning electron microscope, Electron, Materials science, Fracture mechanics


Supraglacial lakes on the Greenland Ice Sheet are expanding inland, but the impact on ice flow is equivocal because interior surface conditions may preclude the transfer of surface water to the bed. Here we use a well-constrained 3D model to demonstrate that supraglacial lakes in Greenland drain when tensile-stress perturbations propagate fractures in areas where fractures are normally absent or closed. These melt-induced perturbations escalate when lakes as far as 80 km apart form expansive networks and drain in rapid succession. The result is a tensile shock that establishes new surface-to-bed hydraulic pathways in areas where crevasses transiently open. We show evidence for open crevasses 135 km inland from the ice margin, which is much farther inland than previously considered possible. We hypothesise that inland expansion of lakes will deliver water and heat to isolated regions of the ice sheet’s interior where the impact on ice flow is potentially large.

Concepts: Glaciology, Water, Drainage, Fracture mechanics, Ice sheet, Lake, Greenland ice sheet, Glacier


Bisphosphonates are the most widely prescribed pharmacologic treatment for osteoporosis and reduce fracture risk in postmenopausal women by up to 50%. However, in the past decade these drugs have been associated with atypical femoral fractures (AFFs), rare fractures with a transverse, brittle morphology. The unusual fracture morphology suggests that bisphosphonate treatment may impair toughening mechanisms in cortical bone. The objective of this study was to compare the compositional and mechanical properties of bone biopsies from bisphosphonate-treated patients with AFFs to those from patients with typical osteoporotic fractures with and without bisphosphonate treatment. Biopsies of proximal femoral cortical bone adjacent to the fracture site were obtained from postmenopausal women during fracture repair surgery (fracture groups, n = 33) or total hip arthroplasty (nonfracture groups, n = 17). Patients were allocated to five groups based on fracture morphology and history of bisphosphonate treatment [+BIS Atypical: n = 12, BIS duration: 8.2 (3.0) y; +BIS Typical: n = 10, 7.7 (5.0) y; +BIS Nonfx: n = 5, 6.4 (3.5) y; -BIS Typical: n = 11; -BIS Nonfx: n = 12]. Vibrational spectroscopy and nanoindentation showed that tissue from bisphosphonate-treated women with atypical fractures was harder and more mineralized than that from bisphosphonate-treated women with typical osteoporotic fractures. In addition, fracture mechanics measurements showed that tissue from patients treated with bisphosphonates had deficits in fracture toughness, with lower crack-initiation toughness and less crack deflection at osteonal boundaries than that of bisphosphonate-naïve patients. Together, these results suggest a deficit in intrinsic and extrinsic toughening mechanisms, which contribute to AFFs in patients treated with long-term bisphosphonates.

Concepts: Hip replacement, Bisphosphonate, Bone, Fracture mechanics, Orthopedic surgery, Fracture, Fracture toughness, Osteoporosis


Iliosacral screw fixation into the first sacral body is a common method for pelvic ring fixation. However, this construct has been shown to be clinically unreliable for the percutaneous fixation of unstable Type C zone II vertically oriented sacral fractures with residual fracture site separation. The objective of this study was to biomechanically compare a locked transsacral construct versus the standard iliosacral construct in a Type C zone II sacral fracture model.

Concepts: Fracture mechanics, Sacroiliac joint, Bone fracture, Comparisons, Pelvis, Comparison, Fracture, Object-oriented programming


The authors analyzed the effect of fatigue on the survival rate and fracture load of monolithic and bi-layer CAD/CAM lithium-disilicate posterior three-unit fixed dental prostheses (FDPs) in comparison to the metal-ceramic gold standard.

Concepts: Fracture mechanics, Gold standard, Gold, Fracture


The mechanism of crack initiation from a clinically relevant notch is not well-understood for crosslinked ultra high molecular weight polyethylene (UHMWPE) used in total joint replacement components. Static mode driving forces, rather than the cyclic mode conditions typically associated with fatigue processes, have been shown to drive crack propagation in this material. Thus, in this study, crack initiation in a notched specimen under a static load was investigated. A video microscope was used to monitor the notch surface of the specimen and crack initiation time was measured from the video by identifying the onset of crack initiation at the notch. Crack initiation was considered using a viscoelastic fracture theory. It was found that the mechanism of crack initiation involved both single layer and a distributed multi-layer phenomenon and that multi-layer crack initiation delayed the crack initiation time for all loading conditions examined. The findings of this study support that the viscoelastic fracture theory governs fracture mechanics in crosslinked UHMWPE. The findings also support that crack initiation from a notch in UHMWPE is a more complex phenomenon than treated by traditional fracture theories for polymers.

Concepts: Shock, Fracture toughness, Fatigue, Fracture, Physics, Polyethylene, Fractography, Fracture mechanics


The combined influence of cyclic fatigue and torsional stress on rotary nickel-titanium instruments has been little investigated. The aim of this study was to determine possible differences in the fracture point of rotary nickel-titanium instruments depending on the application of cyclic fatigue only (CO) or in combination with torsional stress (CT).

Concepts: Fracture mechanics, Mechanics, Polar moment of inertia, Elasticity


Femoral shaft fractures are common in both the young and elderly due to high-impact trauma and low-impact trauma, respectively. Its treatment by indirect reduction through use of locking compression plates (LCPs) has been on the rise. The LCP possess several advantages in fracture fixation, combining angular stability through use of locking screws with misalignment correction and fracture reduction onto the plate through use of conventional screws. However, there have been cases of plate breakage and fracture non-unions to warrant a study to improve its stability. A design modification is suggested for mid-diaphyseal fractures, whereby unused screw holes are removed. The structural stability of the modified and commercially available LCP is computationally analyzed using finite element modelling and a comparison made in terms of mechanical performance across different fracture lengths. A critical fracture length for which the commercially available LCP is functional as a fixator for mid-diaphyseal fractures was established. The maximum von Mises' stress attained by the commercially available LCP rose to as high as 105 MPa, whereas for the modified LCP, it did not exceed 25 MPa. As expected, these stresses were also found at screw holes, nearest to the fracture site. Critical fracture length allows clinicians to quantitatively distinguish between mid-diaphyseal fractures that can or cannot be treated by the use of LCP fixation. It is also believed that the proposed design modification will substantially increase the fatigue life of the fixator, especially at screw holes nearest to the fracture region, where most fatigue fractures are known to occur and will consequently be functional for greater fracture lengths.

Concepts: Fracture mechanics


To evaluate the lateral transmalleolar (LTM) approach for a displaced postero-lateral fragments of a posterior malleolus fracture (PMF).

Concepts: Fracture mechanics, Bone fracture, Fracture