Discover the most talked about and latest scientific content & concepts.

Concept: Fourier transform spectroscopy


Collisions of excitation pulses in dissipative systems lead usually to their annihilation. In this paper, we report electrochemical experiments exhibiting more complex pulse interaction with collision survival and pulse splitting, phenomena that have rarely been observed experimentally and are only poorly understood theoretically. Using spatially resolved in-situ Fourier transform infrared spectroscopy (FTIR) in the attenuated total reflection configuration, we monitored reaction pulses during the electrochemical oxidation of CO on Pt thin film electrodes in a flow cell. The system forms quasi-1d pulses that align parallel to the flow and propagate perpendicular to it. The pulses split once in a while, generating a second solitary wave in the backward moving direction. Upon collision, the waves penetrate each other in a soliton-like manner. These unusual pulse dynamics could be reproduced with a 3-component reaction-diffusion-migration model with two inhibitor species, one of them exhibiting a long-range spatial coupling. The simulations shed light on existence criteria of such dissipative solitons.

Concepts: Spectroscopy, Light, Refraction, Electrochemistry, Fourier transform, Electrochemical cell, Infrared spectroscopy, Fourier transform spectroscopy


A simple method for incorporating amine groups in hydrogenated castor oil (HCO) to produce wax for beeswax or carnauba wax substitution in packaging and coating was developed. From the conversion rate of the products, HCO was reacted with ethanolamine at 150°C for 5 h, and the molar ratio of HCO and ethanolamine was 1:4. The hardness of the final product was seven times higher than that of beeswax, the cohesiveness of the final product was 1.3 times higher than that of beeswax and approximately one half of that of carnauba wax, and the melting point of the final product is 98°C. The Fourier transform Infrared spectroscopy showed that the amide groups were incorporated to form the amide products. In coating application, the results showed that the force of the final product coating cardboard was higher than that of beeswax and paraffin wax and less than that of carnauba wax. After 24 h soaking, the compression forces were decreased. HCO fatty acid wax can be an alternative wax for carnauba wax and beeswax in coating applications.

Concepts: Spectroscopy, Wax, Fourier transform spectroscopy, Beeswax, Waxes


Time-resolved Fourier transform infrared (FTIR) spectroscopy is a powerful tool to elucidate label-free the reaction mechanisms of proteins. After assignment of the absorption bands to individual groups of the protein, the order of events during the reaction mechanism can be monitored and rate constants can be obtained. Additionally, structural information is encoded into infrared spectra and can be decoded by combining the experimental data with biomolecular simulations. We have determined recently the infrared vibrations of GTP and guanosine diphosphate (GDP) bound to Gαi1, a ubiquitous GTPase. These vibrations are highly sensitive for the environment of the phosphate groups and thereby for the binding mode the GTPase adopts to enable fast hydrolysis of GTP. In this study we calculated these infrared vibrations from biomolecular simulations to transfer the spectral information into a computational model that provides structural information far beyond crystal structure resolution. Conformational ensembles were generated using 15 snapshots of several 100 ns molecular-mechanics/molecular-dynamics (MM-MD) simulations, followed by quantum-mechanics/molecular-mechanics (QM/MM) minimization and normal mode analysis. In comparison with other approaches, no time-consuming QM/MM-MD simulation was necessary. We carefully benchmarked the simulation systems by deletion of single hydrogen bonds between the GTPase and GTP through several Gαi1 point mutants. The missing hydrogen bonds lead to blue-shifts of the corresponding absorption bands. These band shifts for α-GTP (Gαi1-T48A), γ-GTP (Gαi1-R178S), and for both β-GTP/γ-GTP (Gαi1-K46A, Gαi1-D200E) were found in agreement in the experimental and the theoretical spectra. We applied our approach to open questions regarding Gαi1: we show that the GDP state of Gαi1 carries a Mg(2+), which is not found in x-ray structures. Further, the catalytic role of K46, a central residue of the P-loop, and the protonation state of the GTP are elucidated.

Concepts: DNA, Protein, Spectroscopy, Infrared spectroscopy, Fourier transform spectroscopy, Mode shape, Normal mode, Guanosine triphosphate


Cannabinoid ligands regulate bone mass, but skeletal effects of cannabis (marijuana and hashish) have not been reported. Bone fractures are highly prevalent, involving prolonged immobilization and discomfort. Here we report that the major non-psychoactive cannabis constituent, cannabidiol (CBD), enhances the biomechanical properties of healing rat mid-femoral fractures. The maximal load and work-to-failure, but not the stiffness, of femora from rats given a mixture of CBD and THC for 8 weeks were markedly increased by CBD. This effect is not shared by Δ(9) -tetrahydrocannabinol (THC, the psychoactive component of cannabis), but THC potentiates the CBD stimulated work-to-failure at 6 weeks post fracture followed by attenuation of the CBD effect at 8 weeks. Using μCT, the fracture callus size was transiently reduced by either CBD or THC 4 weeks after fracture but reached control level after 6 and 8 weeks. The callus material density was unaffected by CBD and/or THC. By contrast, CBD stimulated mRNA expression of Plod1 in primary osteoblast cultures, encoding an enzyme that catalyzes lysine hydroxylation, which is in turn involved in collagen crosslinking and stabilization. Using Fourier Transform Infrared Spectroscopy we confirmed the increase in collagen crosslink ratio by CBD, which is likely to contribute to the improved biomechanical properties of the fracture callus. Taken together, these data show that CBD leads to improvement in fracture healing and demonstrate the critical mechanical role of collagen crosslinking enzymes. This article is protected by copyright. All rights reserved.

Concepts: Bone, Collagen, Cannabinoid receptor, Tetrahydrocannabinol, Lysine, Cannabis, Fourier transform spectroscopy


Polystyrene (PS) is generally considered to be durable and resistant to biodegradation. Mealworms (the larvae of Tenebrio molitor Linnaeus) from different sources chew and eat Styrofoam, a common PS product. The Styrofoam was efficiently degraded in the larval gut within a retention time of less than 24 h. Fed with Styrofoam as the sole diet, the larvae lived as well as those fed with a normal diet (bran) over a period of one month. The analysis of fecula egested from Styrofoam-feeding larvae, using gel permeation chromatography (GPC), solid state 13C cross polarization/magic angle spinning nuclear magnetic resonance (CP/MAS NMR) spectroscopy and thermogravimetric Fourier transform infrared (TG-FTIR) spectroscopy, substantiated that cleavage/depolymerization of long-chain PS molecules and the formation of depolymerized metabolites occurred in the larval gut. Within a 16-day test period, 47.7% of the ingested Styrofoam carbon was converted into CO2, and the residue (ca. 49.2%) was egested as fecula with a limited fraction incorporated into biomass (ca. 0.5%). Tests with α13C- or β13C-labeled PS confirmed that the 13C-labeled PS was mineralized to 13CO2 and incorporated into lipids. The discovery of the rapid biodegradation of PS in the larval gut reveals a new fate for plastic waste in the environment.

Concepts: Protein, Spectroscopy, Nuclear magnetic resonance, Chromatography, Analytical chemistry, Fourier transform, Fourier transform spectroscopy, Fourier analysis


Improved methods are required for the recycling of waste printed circuit boards (WPCBs). In this study, WPCBs (1-1.5 cm2 in size) were separated into their components using dimethyl sulfoxide (DMSO) at 60°C for 45 min and a metallographic microscope used to verify their delamination. An increased incubation time of 210 min yielded a complete separation of WPCBs into their components, and copper foils and glass fibers were obtained. The separation time decreased with increasing temperature. When the WPCB size was increased to 2-3 cm2, the temperature required for complete separation increased to 90°C. When the temperature was increased to 135°C, liquid photo solder resists could be removed from the copper foil surfaces. The DMSO was regenerated by rotary decompression evaporation, and residues were obtained. Fourier transform infrared spectroscopy (FT-IR), thermal analysis, nuclear magnetic resonance, scanning electron microscopy and energy-dispersive x-ray spectroscopy were used to verify that these residues were brominated epoxy resins. From FT-IR analysis after the dissolution of brominated epoxy resins in DMSO it was deduced that hydrogen bonding may play an important role in the dissolution mechanism. This novel technology offers a method for separating valuable materials and preventing environmental pollution from WPCBs.

Concepts: Spectroscopy, Nuclear magnetic resonance, Scientific techniques, Fourier transform, Infrared spectroscopy, Fourier transform spectroscopy, Printed circuit board, FR-4


The purpose of this study is to develop a green strategy to synthesize the cellulose-based nanocomposites and open a new avenue to the high value-added applications of biomass. Herein, we reported a microwave-assisted ionic liquid route to the preparation of cellulose/CuO nanocomposites, which combined three major green chemistry principles: using environmentally friendly method, greener solvents, and sustainable resources. The influences of the reaction parameters including the heating time and the ratio of cellulose solution to ionic liquid on the products were discussed by X-ray powder diffraction, Fourier transform infrared spectrometry, and scanning electron microscopy. The crystallinity of CuO increased and the CuO shape changed from nanosheets to bundles and to particles with increasing heating time. The ratio of cellulose solution to ionic liquid also affected the shapes of CuO in nanocomposites. Moreover, CuO crystals were obtained by thermal treatment of the cellulose/CuO nanocomposites at 800 °C for 3 h in air.

Concepts: Electron, Spectroscopy, Crystal, Solvent, Ionic liquid, Infrared spectroscopy, Fourier transform spectroscopy, Green chemistry



A significant challenge to realize the full potential of nanotechnology for therapeutic and diagnostic applications is to understand and evaluate how live cells interact with an external stimulus, such as a nanosized particle, and the toxicity and broad risk associated with these stimuli. It is difficult to capture the complexity and dynamics of these interactions by following omics-based approaches exclusively, which can be expensive and time-consuming. Attenuated total reflectance-Fourier transform infrared spectroscopy is well suited to provide noninvasive live-cell monitoring of cellular responses to potentially toxic nanosized particles or other stimuli. This alternative approach provides the ability to carry out rapid toxicity screenings and nondisruptive monitoring of live-cell cultures. We review the technical basis of the approach, the instrument configuration and interface with the biological media, the various effects that impact the data, subsequent data analysis and toxicity, and present some preliminary results on live-cell monitoring.

Concepts: Spectroscopy, Particle physics, Infrared spectroscopy, Fourier transform spectroscopy, Infrared, Near infrared spectroscopy, Applied spectroscopy, Rotational spectroscopy


Abstract Objective: This work deals with the preparation, characterization and in vitro release study of IBU-loaded gel graft copolymer nanoparticles. Method: Gelatin (Gel) graft copolymer nanoparticles were prepared using styrene (Sty) and/or 2-hydroxyethyl methacrylate (HEMA) monomers in the presence of potassium persulfate and glutaraldehyde as an initiator and cross-linker, respectively. The prepared nanoparticles as sustained release drug carriers were investigated using the nonsteriodal anti-inflammatory model drug, ibuprofen (IBU). Results: The prepared nanoparticles as sustained release drug carriers were investigated using the nonsteriodal anti-inflammatory model drug, IBU. The prepared Gel/HEMA and Gel/Sty nanoparticles exhibited particles size ranging from 15 to 17 nm and from 0.42 to 5 mm, respectively. The dissolution of IBU in phosphate buffer, pH 7.4, at 37°C from the prepared nanoparticles was evaluated using UV spectroscopy. In addition, the prepared nanoparticles were characterized using Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), transmitting electron microscope (TEM) and zeta potential/particle size analyzer. In vitro dissolution study showed that the dissolution rates of the crosslinked nanoparticles were retarded relative to the uncrosslinked ones. Moreover, the released amount constantly decreases with increasing gluteraldehyde content in the gel nanoparticles. Conclusion: Crosslinked gel-based graft copolymers exhibited slow IBU release within six hours. Furthermore, results from different characterization techniques such as TEM, particles size and zeta potential measurements confirmed the formation of pH-responsive gel-graft copolymer nanoparticles.

Concepts: Spectroscopy, Polymer, Polymer chemistry, Colloid, Differential scanning calorimetry, Scientific techniques, Infrared spectroscopy, Fourier transform spectroscopy