SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Formosan languages

25

There are two very different interpretations of the prehistory of Island Southeast Asia (ISEA), with genetic evidence invoked in support of both. The “out-of-Taiwan” model proposes a major Late Holocene expansion of Neolithic Austronesian speakers from Taiwan. An alternative, proposing that Late Glacial/postglacial sea-level rises triggered largely autochthonous dispersals, accounts for some otherwise enigmatic genetic patterns, but fails to explain the Austronesian language dispersal. Combining mitochondrial DNA (mtDNA), Y-chromosome and genome-wide data, we performed the most comprehensive analysis of the region to date, obtaining highly consistent results across all three systems and allowing us to reconcile the models. We infer a primarily common ancestry for Taiwan/ISEA populations established before the Neolithic, but also detected clear signals of two minor Late Holocene migrations, probably representing Neolithic input from both Mainland Southeast Asia and South China, via Taiwan. This latter may therefore have mediated the Austronesian language dispersal, implying small-scale migration and language shift rather than large-scale expansion.

Concepts: DNA, Mitochondrion, Mitochondrial DNA, Southeast Asia, Holocene, Historical linguistics, Austronesian languages, Formosan languages

1

A Taiwan origin for the expansion of the Austronesian languages and their speakers is well supported by linguistic and archaeological evidence. However, human genetic evidence is more controversial. Until now, there had been no ancient skeletal evidence of a potential Austronesian-speaking ancestor prior to the Taiwan Neolithic ∼6,000 years ago, and genetic studies have largely ignored the role of genetic diversity within Taiwan as well as the origins of Formosans. We address these issues via analysis of a complete mitochondrial DNA genome sequence of an ∼8,000-year-old skeleton from Liang Island (located between China and Taiwan) and 550 mtDNA genome sequences from 8 aboriginal (highland) Formosan and 4 other Taiwanese groups. We show that the Liangdao Man mtDNA sequence is closest to Formosans, provides a link to southern China, and has the most ancestral haplogroup E sequence found among extant Austronesian speakers. Bayesian phylogenetic analysis allows us to reconstruct a history of early Austronesians arriving in Taiwan in the north ∼6,000 years ago, spreading rapidly to the south, and leaving Taiwan ∼4,000 years ago to spread throughout Island Southeast Asia, Madagascar, and Oceania.

Concepts: DNA, Genetics, Human genome, Mitochondrial DNA, Southeast Asia, Taiwan, Austronesian languages, Formosan languages

0

Global warming-induced extreme climatic changes have increased the frequency of severe typhoons bringing heavy rains; this has considerably affected the stability of the forest ecosystems. Since the Taiwan 921 earthquake occurred in 21 September 1999, the mountain geology of the Island of Taiwan has become unstable and typhoon-induced floods and mudslides have changed the topography and geomorphology of the area; this has further affected the stability and functions of the riparian ecosystem. In this study, the vegetation of the unique Aowanda Formosan gum forest in Central Taiwan was monitored for 3 years after the occurrence of floods and mudslides during 2009-2011. Tree growth and survival, effects of floods and mudslides, and factors influencing tree survival were investigated. We hypothesized that (1) the effects of floods on the survival are significantly different for each tree species; (2) tree diameter at breast height (DBH) affects tree survival-i.e., the larger the DBH, the higher the survival rate; and (3) the relative position of trees affects tree survival after disturbances by floods and mudslides-the farther trees are from the river, the higher is their survival rate. Our results showed that after floods and mudslides, the lifespans of the major tree species varied significantly. Liquidambar formosana displayed the highest flood tolerance, and the trunks of Lagerstoemia subcostata began rooting after disturbances. Multiple regression analysis indicated that factors such as species, DBH, distance from sampled tree to the above boundary of sample plot (far from the riverbank), and distance from the upstream of the river affected the lifespans of trees; the three factors affected each tree species to different degrees. Furthermore, we showed that insect infestation had a critical role in determining tree survival rate. Our 3-year monitoring investigation revealed that severe typhoon-induced floods and mudslides disturbed the riparian vegetation in the Formosan gum forest, replacing the original vegetation and beginning secondary succession. Moreover, flooding provided new habitats for various plants to establish their progeny. By using our results, lifecycles of trees (including death) can be understood in detail, facilitating riparian vegetation engineering in forests severely disturbed by typhoon-induced floods and mudslides.

Concepts: Regression analysis, Effect, River, Tree, Flood, Diameter at breast height, Ecological succession, Formosan languages

0

The Taiwanese aborigines have been regarded as the source populations for the Austronesian expansion that populated Oceania to the east and Madagascar off Africa to the West. Although a number of genetic studies have been performed on some of these important tribes, the scope of the investigations has been limited, varying in the specific populations examined as well as the maker systems employed. This has made direct comparison among studies difficult. In an attempt to alleviate this lacuna, we investigate, for the first time, the genetic diversity of all nine major Taiwanese aboriginal tribes (Ami, Atayal, Bunun, Rukai, Paiwan, Saisat, Puyuma, Tsou and Yami) utilizing a new generation multiplex Y-STR system that allows for the genotyping of 23 loci from a single amplification reaction. This comprehensive approach examining 293 individuals from all nine main tribes with the same battery of forensic markers provides for the much-needed equivalent data essential for comparative analyses. Our results have uncovered that these nine major aboriginal populations exhibit limited intrapopulation genetic diversity and are highly heterogeneous from each other, possibly the result of endogamy, isolation, drift and/or unique ancestral populations. Specifically, genetic diversity, discrimination capacity, fraction of unique haplotypes and the most frequent haplotypes differ among the nine tribes, with the Tsou possessing the lowest values for the first three of these parameters. The phylogenetic analyses performed indicate that the genetic diversity among all nine tribes is greater than the diversity observed among the worldwide reference populations examined, indicating an extreme case of genetic heterogeneity among these tribes that have lived as close neighbors for thousands of years confined to the limited geographical area of an island.

Concepts: Taiwan, Indigenous Australians, Taiwanese aborigines, Formosan languages, A-mei, Ethnic groups in Taiwan, Atayal people, Tsou people

0

In the present study, for the first time, 293 Taiwanese aboriginal males from all nine major tribes (Ami, Atayal, Bunun, Rukai, Paiwan, Saisat, Puyuma, Tsou, Yami) were genotyped with 17 YSTR loci in a attend to reveal migrational patterns connected with the Austronesian expansion. We investigate the paternal genetic relationships of these Taiwanese aborigines to 43 Asia-Pacific reference populations, geographically selected to reflect various locations within the Austronesian domain. Tsou and Puyuma tribes exhibit the lowest (0.1851) and the highest (0.5453) average total genetic diversity, respectively. Further, the fraction of unique haplotypes is also relatively high in the Puyuma (86.7%) and low in Tsou (33.3%) suggesting different demographic histories. Multidimensional scaling (MDS) and analysis of molecular variance (AMOVA) revealed several notable findings: 1) the Taiwan indigenous populations are highly diverse. In fact, the level of inter-population heterogeneity displayed by the Taiwanese aboriginal populations is close to that exhibited among all 52 Asia-Pacific populations examined; 2) the asymmetrical contribution of the Taiwanese aborigines to the Oceanic groups. Ami, Bunun and Saisiyat tribes exhibit the strongest paternal links to the Solomon and Polynesian island communities, whereas most of the remaining Taiwanese aboriginal groups are more genetically distant to these Oceanic inhabitants; 3) the present YSTR analyses does not reveal a strong paternal affinity of the nine Taiwanese tribes to their continental Asian neighbors. Overall, our current findings suggest that, perhaps, only a few of the tribes were involved in the migration out of Taiwan.

Concepts: Taiwan, Republic of China, Indigenous Australians, Indigenous peoples, Austronesian languages, Taiwanese aborigines, Formosan languages, Ethnic groups in Taiwan

0

Taiwanese aborigines have been deemed the ancestors of Austronesian speakers which are currently distributed throughout two-thirds of the globe. As such, understanding their genetic distribution and diversity as well as their relationship to mainland Asian groups is important to consolidating the numerous models that have been proposed to explain the dispersal of Austronesian speaking peoples into Oceania. To better understand the role played by the aboriginal Taiwanese in this diaspora, we have analyzed a total of 451 individuals belonging to nine of the tribes currently residing in Taiwan, namely the Ami, Atayal, Bunun, Paiwan, Puyuma, Rukai, Saisiyat, Tsou, and the Yami from Orchid Island off the coast of Taiwan across 15 autosomal short tandem repeat loci. In addition, we have compared the genetic profiles of these tribes to populations from mainland China as well as to collections at key points throughout the Austronesian domain. While our results suggest that Daic populations from Southern China are the likely forefathers of the Taiwanese aborigines, populations within Taiwan show a greater genetic impact on groups at the extremes of the current domain than populations from Indonesia, Mainland, or Southeast Asia lending support to the “Out of Taiwan” hypothesis. We have also observed that specific Taiwanese aboriginal groups (Paiwan, Puyuma, and Saisiyat), and not all tribal populations, have highly influenced genetic distributions of Austronesian populations in the pacific and Madagascar suggesting either an asymmetric migration out of Taiwan or the loss of certain genetic signatures in some of the Taiwanese tribes due to endogamy, isolation, and/or drift. Am J Phys Anthropol, 2012. © 2012 Wiley Periodicals, Inc.

Concepts: Southeast Asia, Philippines, Taiwan, Republic of China, Austronesian languages, Taiwanese aborigines, Formosan languages, Austronesian peoples