SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Forecasting

126

Climate is changing across the world, including the major maize-growing state of Iowa in the USA. To maintain crop yields, farmers will need a suite of adaptation strategies, and choice of strategy will depend on how the local to regional climate is expected to change. Here we predict how maize yield might change through the 21st century as compared with late 20th century yields across Iowa, USA, a region representing ideal climate and soils for maize production that contributes substantially to the global maize economy. To account for climate model uncertainty, we drive a dynamic ecosystem model with output from six climate models and two future climate forcing scenarios. Despite a wide range in the predicted amount of warming and change to summer precipitation, all simulations predict a decrease in maize yields from late 20th century to middle and late 21st century ranging from 15% to 50%. Linear regression of all models predicts a 6% state-averaged yield decrease for every 1°C increase in warm season average air temperature. When the influence of moisture stress on crop growth is removed from the model, yield decreases either remain the same or are reduced, depending on predicted changes in warm season precipitation. Our results suggest that even if maize were to receive all the water it needed, under the strongest climate forcing scenario yields will decline by 10-20% by the end of the 21st century.

Concepts: Regression analysis, United States, Climate, Ecosystem, Climate change, Forecasting, 21st century, Global warming

106

The sustainability of future water resources is of paramount importance and is affected by many factors, including population, wealth and climate. Inherent in current methods to estimate these factors in the future is the uncertainty of their prediction. In this study, we integrate a large ensemble of scenarios-internally consistent across economics, emissions, climate, and population-to develop a risk portfolio of water stress over a large portion of Asia that includes China, India, and Mainland Southeast Asia in a future with unconstrained emissions. We isolate the effects of socioeconomic growth from the effects of climate change in order to identify the primary drivers of stress on water resources. We find that water needs related to socioeconomic changes, which are currently small, are likely to increase considerably in the future, often overshadowing the effect of climate change on levels of water stress. As a result, there is a high risk of severe water stress in densely populated watersheds by 2050, compared to recent history. There is strong evidence to suggest that, in the absence of autonomous adaptation or societal response, a much larger portion of the region’s population will live in water-stressed regions in the near future. Tools and studies such as these can effectively investigate large-scale system sensitivities and can be useful in engaging and informing decision makers.

Concepts: Southeast Asia, Population, Population ecology, Effect, Futurology, Future, Population density, Forecasting

103

While there is growing recognition of the malaria impacts of large dams in sub-Saharan Africa, the cumulative malaria impact of reservoirs associated with current and future dam developments has not been quantified. The objective of this study was to estimate the current and predict the future impact of large dams on malaria in different eco-epidemiological settings across sub-Saharan Africa.

Concepts: Malaria, Africa, Sub-Saharan Africa, Prediction, Futurology, Future, Forecasting, Dam

74

To plan for pensions and health and social services, future mortality and life expectancy need to be forecast. Consistent forecasts for all subnational units within a country are very rare. Our aim was to forecast mortality and life expectancy for England and Wales' districts.

Concepts: Prediction, Futurology, Future, Life expectancy, England, Forecasting, Wales, Planning

69

Why do people tend to care for upholding principles of justice? This study examined the association between individual differences in the affective, motivational and cognitive components of empathy, sensitivity to justice, and psychopathy in participants (N 265) who were also asked to rate the permissibility of everyday moral situations that pit personal benefit against moral standards of justice. Counter to commonsense, emotional empathy was not associated with sensitivity to injustice for others. Rather, individual differences in cognitive empathy and empathic concern predicted sensitivity to justice for others, as well as the endorsement of moral rules. Psychopathy coldheartedness scores were inversely associated with motivation for justice. Moreover, hierarchical multiple linear regression analysis revealed that self-focused and other-focused orientations toward justice had opposing influences on the permissibility of moral judgments. High scores on psychopathy were associated with less moral condemnation of immoral behavior. Together, these results contribute to a better understanding of the information processing mechanisms underlying justice motivation, and may guide interventions designed to foster justice and moral behavior. In order to promote justice motivation, it may be more effective to encourage perspective taking and reasoning to induce concern for others than emphasizing emotional sharing with the misfortune of others.

Concepts: Psychology, Regression analysis, Linear regression, Econometrics, Empathy, Emotion, Morality, Forecasting

65

Affective forecasting is an ability that allows the prediction of the hedonic outcome of never-before experienced situations, by mentally recombining elements of prior experiences into possible scenarios, and pre-experiencing what these might feel like. It has been hypothesised that this ability is uniquely human. For example, given prior experience with the ingredients, but in the absence of direct experience with the mixture, only humans are said to be able to predict that lemonade tastes better with sugar than without it. Non-human animals, on the other hand, are claimed to be confined to predicting-exclusively and inflexibly-the outcome of previously experienced situations. Relying on gustatory stimuli, we devised a non-verbal method for assessing affective forecasting and tested comparatively one Sumatran orangutan and ten human participants. Administered as binary choices, the test required the participants to mentally construct novel juice blends from familiar ingredients and to make hedonic predictions concerning the ensuing mixes. The orangutan’s performance was within the range of that shown by the humans. Both species made consistent choices that reflected independently measured taste preferences for the stimuli. Statistical models fitted to the data confirmed the predictive accuracy of such a relationship. The orangutan, just like humans, thus seems to have been able to make hedonic predictions concerning never-before experienced events.

Concepts: Scientific method, Prediction, Futurology, Future, Prophecy, Hominidae, Forecasting, Divination

61

We present a machine learning-based methodology capable of providing real-time (“nowcast”) and forecast estimates of influenza activity in the US by leveraging data from multiple data sources including: Google searches, Twitter microblogs, nearly real-time hospital visit records, and data from a participatory surveillance system. Our main contribution consists of combining multiple influenza-like illnesses (ILI) activity estimates, generated independently with each data source, into a single prediction of ILI utilizing machine learning ensemble approaches. Our methodology exploits the information in each data source and produces accurate weekly ILI predictions for up to four weeks ahead of the release of CDC’s ILI reports. We evaluate the predictive ability of our ensemble approach during the 2013-2014 (retrospective) and 2014-2015 (live) flu seasons for each of the four weekly time horizons. Our ensemble approach demonstrates several advantages: (1) our ensemble method’s predictions outperform every prediction using each data source independently, (2) our methodology can produce predictions one week ahead of GFT’s real-time estimates with comparable accuracy, and (3) our two and three week forecast estimates have comparable accuracy to real-time predictions using an autoregressive model. Moreover, our results show that considerable insight is gained from incorporating disparate data streams, in the form of social media and crowd sourced data, into influenza predictions in all time horizons.

Concepts: Scientific method, Prediction, Futurology, Future, Source code, Predictive analytics, Forecasting, Astrology

59

We measured the personalities, values, and preferences of more than 19,000 people who ranged in age from 18 to 68 and asked them to report how much they had changed in the past decade and/or to predict how much they would change in the next decade. Young people, middle-aged people, and older people all believed they had changed a lot in the past but would change relatively little in the future. People, it seems, regard the present as a watershed moment at which they have finally become the person they will be for the rest of their lives. This “end of history illusion” had practical consequences, leading people to overpay for future opportunities to indulge their current preferences.

Concepts: Present, Time, Middle age, Person, Futurology, Future, Forecasting, Past

49

Increasing numbers of homes are being destroyed by wildfire in the wildland-urban interface. With projections of climate change and housing growth potentially exacerbating the threat of wildfire to homes and property, effective fire-risk reduction alternatives are needed as part of a comprehensive fire management plan. Land use planning represents a shift in traditional thinking from trying to eliminate wildfires, or even increasing resilience to them, toward avoiding exposure to them through the informed placement of new residential structures. For land use planning to be effective, it needs to be based on solid understanding of where and how to locate and arrange new homes. We simulated three scenarios of future residential development and projected landscape-level wildfire risk to residential structures in a rapidly urbanizing, fire-prone region in southern California. We based all future development on an econometric subdivision model, but we varied the emphasis of subdivision decision-making based on three broad and common growth types: infill, expansion, and leapfrog. Simulation results showed that decision-making based on these growth types, when applied locally for subdivision of individual parcels, produced substantial landscape-level differences in pattern, location, and extent of development. These differences in development, in turn, affected the area and proportion of structures at risk from burning in wildfires. Scenarios with lower housing density and larger numbers of small, isolated clusters of development, i.e., resulting from leapfrog development, were generally predicted to have the highest predicted fire risk to the largest proportion of structures in the study area, and infill development was predicted to have the lowest risk. These results suggest that land use planning should be considered an important component to fire risk management and that consistently applied policies based on residential pattern may provide substantial benefits for future risk reduction.

Concepts: Risk, Management, Forecasting, Project management, Urban studies and planning terminology, Wildfire, Housing, Zoning

48

Reaction prediction remains one of the major challenges for organic chemistry and is a prerequisite for efficient synthetic planning. It is desirable to develop algorithms that, like humans, “learn” from being exposed to examples of the application of the rules of organic chemistry. We explore the use of neural networks for predicting reaction types, using a new reaction fingerprinting method. We combine this predictor with SMARTS transformations to build a system which, given a set of reagents and reactants, predicts the likely products. We test this method on problems from a popular organic chemistry textbook.

Concepts: Product, Chemical reaction, Chemistry, Organic reaction, Biochemistry, Sodium, Organic chemistry, Forecasting