SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Footnote

10

The use of quantitative metrics to gauge the impact of scholarly publications, authors, and disciplines is predicated on the availability of reliable usage and annotation data. Citation and download counts are widely available from digital libraries. However, current annotation systems rely on proprietary labels, refer to journals but not articles or authors, and are manually curated. To address these limitations, we propose a social framework based on crowdsourced annotations of scholars, designed to keep up with the rapidly evolving disciplinary and interdisciplinary landscape. We describe a system called Scholarometer, which provides a service to scholars by computing citation-based impact measures. This creates an incentive for users to provide disciplinary annotations of authors, which in turn can be used to compute disciplinary metrics. We first present the system architecture and several heuristics to deal with noisy bibliographic and annotation data. We report on data sharing and interactive visualization services enabled by Scholarometer. Usage statistics, illustrating the data collected and shared through the framework, suggest that the proposed crowdsourcing approach can be successful. Secondly, we illustrate how the disciplinary bibliometric indicators elicited by Scholarometer allow us to implement for the first time a universal impact measure proposed in the literature. Our evaluation suggests that this metric provides an effective means for comparing scholarly impact across disciplinary boundaries.

Concepts: Scientific method, Computer, Graphic design, Annotated bibliography, Reference, Citation, Software architecture, Footnote

6

Currently available sequencing technologies enable quick and economical sequencing of many new eukaryotic parasite (apicomplexan or kinetoplastid) species or strains. Compared to SNP calling approaches, de novo assembly of these genomes enables researchers to additionally determine insertion, deletion and recombination events as well as to detect complex sequence diversity, such as that seen in variable multigene families. However, there currently are no automated eukaryotic annotation pipelines offering the required range of results to facilitate such analyses. A suitable pipeline needs to perform evidence-supported gene finding as well as functional annotation and pseudogene detection up to the generation of output ready to be submitted to a public database. Moreover, no current tool includes quick yet informative comparative analyses and a first pass visualization of both annotation and analysis results. To overcome those needs we have developed the Companion web server (http://companion.sanger.ac.uk) providing parasite genome annotation as a service using a reference-based approach. We demonstrate the use and performance of Companion by annotating two Leishmania and Plasmodium genomes as typical parasite cases and evaluate the results compared to manually annotated references.

Concepts: DNA, Gene, Genetics, Bacteria, Chromosome, Annotation, Annotated bibliography, Footnote

5

The annotation of small molecules is one of the most challenging and important steps in untargeted mass spectrometry analysis, as most of our biological interpretations rely on structural annotations. Molecular networking has emerged as a structured way to organize and mine data from untargeted tandem mass spectrometry (MS/MS) experiments and has been widely applied to propagate annotations. However, propagation is done through manual inspection of MS/MS spectra connected in the spectral networks and is only possible when a reference library spectrum is available. One of the alternative approaches used to annotate an unknown fragmentation mass spectrum is through the use of in silico predictions. One of the challenges of in silico annotation is the uncertainty around the correct structure among the predicted candidate lists. Here we show how molecular networking can be used to improve the accuracy of in silico predictions through propagation of structural annotations, even when there is no match to a MS/MS spectrum in spectral libraries. This is accomplished through creating a network consensus of re-ranked structural candidates using the molecular network topology and structural similarity to improve in silico annotations. The Network Annotation Propagation (NAP) tool is accessible through the GNPS web-platform https://gnps.ucsd.edu/ProteoSAFe/static/gnps-theoretical.jsp.

Concepts: Mass spectrometry, Structure, Annotation, Computer network, Tandem mass spectrometry, Fourier transform ion cyclotron resonance, Reference, Footnote

5

Identification of gene-disease association is crucial to understanding disease mechanism. A rapid increase in biomedical literatures, led by advances of genome-scale technologies, poses challenge for manually-curated-based annotation databases to characterize gene-disease associations effectively and timely. We propose an automatic method-The Disease Ontology Annotation Framework (DOAF) to provide a comprehensive annotation of the human genome using the computable Disease Ontology (DO), the NCBO Annotator service and NCBI Gene Reference Into Function (GeneRIF). DOAF can keep the resulting knowledgebase current by periodically executing automatic pipeline to re-annotate the human genome using the latest DO and GeneRIF releases at any frequency such as daily or monthly. Further, DOAF provides a computable and programmable environment which enables large-scale and integrative analysis by working with external analytic software or online service platforms. A user-friendly web interface (doa.nubic.northwestern.edu) is implemented to allow users to efficiently query, download, and view disease annotations and the underlying evidences.

Concepts: DNA, Gene, Genetics, Human genome, Human Genome Project, Genome, Annotation, Footnote

4

BioR is a toolkit for annotating variants. BioR stores public and user-specific annotation sources in indexed, JSON encoded flat files (catalogs). The BioR toolkit provides the functionality to combine and retrieve annotation from these catalogs via the command line interface. Several catalogs from commonly used annotation sources and instructions for creating user-specific catalogs is provided. Commands from the Toolkit can be combined with other UNIX commands for advanced annotation processing. We also provide instructions for the development of custom annotation pipelines.

Concepts: Unix, User interface, Reference, Graphical user interface, Footnote, Command-line interface, Computer terminal, MS-DOS

3

Ontology organizes and formally conceptualizes information in a knowledge domain with a controlled vocabulary having defined terms and relationships between them. Several ontologies have been used to annotate numerous databases in biology and medicine. Due to their unambiguous nature, ontological annotations facilitate systematic description and data organization, data integration and mining, pattern recognition and statistics, as well as development of analysis and prediction tools. The Variation Ontology was developed to allow the annotation of effects, consequences and mechanisms of DNA, RNA and protein variations. Variation types are systematically organized and a detailed description of effects and mechanisms is possible. VariO is for annotating the variant, not the normal state features or properties, and requires a reference (e.g. reference sequence, reference state property, activity etc) compared to which the changes are indicated. VariO is versatile and can be used for variations ranging from genomic multiplications to single nucleotide or amino acid changes whether of genetic or non-genetic origin. VariO annotations are position specific and can be used for variations in any organism.

Concepts: DNA, Gene, Genetics, Ontology, Annotation, Annotated bibliography, Footnote, Markup language

2

Social media, mobile and wearable technology, and connected devices have significantly expanded the opportunities for conducting biomedical research online. Electronic consent to collecting such data, however, poses new challenges when contrasted to traditional consent processes. It reduces the participant-researcher dialogue but provides an opportunity for the consent deliberation process to move from solitary to social settings. In this research, we propose that social annotations, embedded in the consent form, can help prospective participants deliberate on the research and the organization behind it in ways that traditional consent forms cannot. Furthermore, we examine the role of the comments' valence on prospective participants' beliefs and behavior.

Concepts: Informed consent, Sociology, Annotation, Wearable computer, Legal terms, Footnote, Comment, Web annotation

2

Mitofish is a database of fish mitochondrial genomes (mitogenomes) that includes powerful and precise de novo annotations for mitogenome sequences. Fish occupy an important position in the evolution of vertebrates and the ecology of the hydrosphere, and mitogenomic sequence data have served as a rich source of information for resolving fish phylogenies and identifying new fish species. The importance of a mitogenomic database continues to grow at a rapid pace as massive amounts of mitogenomic data are generated with the advent of new sequencing technologies. A severe bottleneck seems likely to occur with regard to mitogenome annotation because of the overwhelming pace of data accumulation and the intrinsic difficulties in annotating sequences with degenerating transfer RNA structures, divergent start/stop codons of the coding elements, and the overlapping of adjacent elements. To ease this data backlog, we developed an annotation pipeline named MitoAnnotator. MitoAnnotator automatically annotates a fish mitogenome with a high degree of accuracy in approximately five minutes; thus, it is readily applicable to datasets of dozens of sequences. MitoFish also contains re-annotations of previously sequenced fish mitogenomes, enabling researchers to refer to them when they find annotations that are likely to be erroneous or while conducting comparative mitogenomic analyses. For users who need more information on the taxonomy, habitats, phenotypes, or life cycles of fish, MitoFish provides links to related databases. MitoFish and MitoAnnotator are freely available at http://mitofish.aori.u-tokyo.ac.jp/; all of the data can be batch downloaded, and the annotation pipeline can be used via a web interface.

Concepts: DNA, Gene, Sequence, Annotation, Reference, Marginalia, Footnote, Markup language

1

The nuclear ribosomal internal transcribed spacer (ITS) region is the formal fungal barcode and in most cases the marker of choice for the exploration of fungal diversity in environmental samples. Two problems are particularly acute in the pursuit of satisfactory taxonomic assignment of newly generated ITS sequences: (i) the lack of an inclusive, reliable public reference data set and (ii) the lack of means to refer to fungal species, for which no Latin name is available in a standardized stable way. Here, we report on progress in these regards through further development of the UNITE database (http://unite.ut.ee) for molecular identification of fungi. All fungal species represented by at least two ITS sequences in the international nucleotide sequence databases are now given a unique, stable name of the accession number type (e.g. Hymenoscyphus pseudoalbidus|GU586904|SH133781.05FU), and their taxonomic and ecological annotations were corrected as far as possible through a distributed, third-party annotation effort. We introduce the term ‘species hypothesis’ (SH) for the taxa discovered in clustering on different similarity thresholds (97-99%). An automatically or manually designated sequence is chosen to represent each such SH. These reference sequences are released (http://unite.ut.ee/repository.php) for use by the scientific community in, for example, local sequence similarity searches and in the QIIME pipeline. The system and the data will be updated automatically as the number of public fungal ITS sequences grows. We invite everybody in the position to improve the annotation or metadata associated with their particular fungal lineages of expertise to do so through the new Web-based sequence management system in UNITE.

Concepts: DNA, Evolution, Biology, Eukaryote, Fungus, Taxonomic rank, Reference, Footnote

0

To describe and evaluate a simple technique of imaging the fetal esophagus, using the echogenic transverse section of the esophagus in the area behind the heart as a reference point, in all the 3 trimesters of pregnancy.

Concepts: Pregnancy, Fetus, Reference, Footnote