Discover the most talked about and latest scientific content & concepts.

Concept: Fluorine-18


Because curcumin’s anti-inflammatory properties may protect the brain from neurodegeneration, we studied its effect on memory in non-demented adults and explored its impact on brain amyloid and tau accumulation using 2-(1-{6-[(2-[F-18]fluoroethyl)(methyl)amino]-2-naphthyl}ethylidene)malononitrile positron emission tomography (FDDNP-PET).

Concepts: Alzheimer's disease, Positron emission tomography, Positron, Neurology, Hippocampus, Positron emission, Carbon-11, Fluorine-18


Positron emission tomography (PET) with (15)O tracers provides essential information in patients with cerebral vascular disorders, such as cerebral blood flow (CBF), oxygen extraction fraction (OEF), and metabolic rate of oxygen (CMRO(2)). However, most of techniques require an additional C(15)O scan for compensating cerebral blood volume (CBV). We aimed to establish a technique to calculate all functional images only from a single dynamic PET scan, without losing accuracy or statistical certainties. The technique was an extension of previous dual-tracer autoradiography (DARG) approach, but based on the basis function method (DBFM), thus estimating all functional parametric images from a single session of dynamic scan acquired during the sequential administration of H(2)(15)O and (15)O(2). Validity was tested on six monkeys by comparing global OEF by PET with those by arteriovenous blood sampling, and tested feasibility on young healthy subjects. The mean DBFM-derived global OEF was 0.57±0.06 in monkeys, in an agreement with that by the arteriovenous method (0.54±0.06). Image quality was similar and no significant differences were seen from DARG; 3.57%±6.44% and 3.84%±3.42% for CBF, and -2.79%±11.2% and -6.68%±10.5% for CMRO(2). A simulation study demonstrated similar error propagation between DBFM and DARG. The DBFM method enables accurate assessment of CBF and CMRO(2) without additional CBV scan within significantly shortened examination period, in clinical settings.Journal of Cerebral Blood Flow & Metabolism advance online publication, 12 December 2012; doi:10.1038/jcbfm.2012.188.

Concepts: Metabolism, Medical imaging, Positron emission tomography, Positron, Positron emission, Functional magnetic resonance imaging, Carbon-11, Fluorine-18


Since prostate-specific membrane antigen (PSMA) has been identified as a diagnostic target for prostate cancer, many urea-based small PSMA-targeting molecules were developed. First, the clinical application of these Ga-68 labelled compounds in positron emission tomography (PET) showed their diagnostic potential. Besides, the therapy of prostate cancer is a demanding field, and the use of radiometals with PSMA bearing ligands is a valid approach. In this work, we describe the synthesis of a new PSMA ligand, CHX-A'‘-DTPA-DUPA-Pep, the subsequent labelling with Ga-68, Lu-177 and Y-90 and the first in vitro characterization. In cell investigations with PSMA-positive LNCaP C4-2 cells, KD values of ≤14.67 ± 1.95 nM were determined, indicating high biological activities towards PSMA. Radiosyntheses with Ga-68, Lu-177 and Y-90 were developed under mild reaction conditions (room temperature, moderate pH of 5.5 and 7.4, respectively) and resulted in nearly quantitative radiochemical yields within 5 min.

Concepts: Cancer, Metastasis, Positron emission tomography, Positron, Prostate cancer, Positron emission, Prostate specific membrane antigen, Fluorine-18


Alzheimer’s disease (AD) is currently incurable, but there is general agreement that a minimally invasive blood biomarker for screening in preclinical stages would be crucial for future therapy. Diagnostic tools for detection of AD are either invasive like cerebrospinal fluid (CSF) biomarkers or expensive such as positron emission tomography (PET) scanning. Here, we determine the secondary structure change of amyloid-β (Aβ) in human blood. This change used as blood amyloid biomarker indicates prodromal AD and correlates with CSF AD biomarkers and amyloid PET imaging in the cross-sectional BioFINDER cohort. In a further population-based longitudinal cohort (ESTHER), the blood biomarker detected AD several years before clinical diagnosis in baseline samples with a positive likelihood ratio of 7.9; that is, those who were diagnosed with AD over the years were 7.9 times more likely to test positive. This assay may open avenues for blood screening of early AD stages as a funnel for further more invasive and expensive tests.

Concepts: Alzheimer's disease, Medical imaging, Positron emission tomography, Neuroimaging, Positron, Medical tests, Positron emission, Fluorine-18


Converging evidence suggests that Alzheimer disease (AD) involves insulin signaling impairment. Patients with AD and individuals at risk for AD show reduced glucose metabolism, as indexed by fludeoxyglucose F 18-labeled positron emission tomography (FDG-PET).

Concepts: Alzheimer's disease, Insulin, Positron emission tomography, Neuroimaging, Positron, Positron emission, Carbon-11, Fluorine-18


Plasmonic nanoparticle-based photothermal cancer therapy is a promising new tool to inflict localized and irreversible damage to tumor tissue by hyperthermia, without harming surrounding healthy tissue. We developed a single particle and positron emission tomography (PET)-based platform to quantitatively correlate the heat generation of plasmonic nanoparticles with their potential as cancer killing agents. In vitro, the heat generation and absorption cross-section of single irradiated nanoparticles were quantified using a temperature sensitive lipid-based assay and compared to their theoretically predicted photo-absorption. In vivo, the heat generation of irradiated nanoparticles was evaluated in human tumor xenografts in mice using 2-deoxy-2-[F-18]fluoro-D-glucose ((18)F-FDG) PET imaging. To validate the use of this platform, we quantified the photothermal efficiency of near infrared resonant silica-gold nanoshells (AuNSs) and benchmarked this against the heating of colloidal spherical, solid gold nanoparticles (AuNPs). As expected, both in vitro and in vivo the heat generation of the resonant AuNSs performed superior compared to the non-resonant AuNPs. Furthermore, the results showed that PET imaging could be reliably used to monitor early treatment response of photothermal treatment. This multidisciplinary approach provides a much needed platform to benchmark the emerging plethora of novel plasmonic nanoparticles for their potential for photothermal cancer therapy.

Concepts: Oncology, Positron emission tomography, Positron, In vivo, Gold, In vitro, Positron emission, Fluorine-18


The unnatural isotope fluorine-18 ((18)F) is used as a positron emitter in molecular imaging. Currently, many potentially useful (18)F-labeled probe molecules are inaccessible for imaging because no fluorination chemistry is available to make them. The 110-minute half-life of (18)F requires rapid syntheses for which [(18)F]fluoride is the preferred source of fluorine because of its practical access and suitable isotope enrichment. However, conventional [(18)F]fluoride chemistry has been limited to nucleophilic fluorination reactions. We report the development of a palladium-based electrophilic fluorination reagent derived from fluoride and its application to the synthesis of aromatic (18)F-labeled molecules via late-stage fluorination. Late-stage fluorination enables the synthesis of conventionally unavailable positron emission tomography (PET) tracers for anticipated applications in pharmaceutical development as well as preclinical and clinical PET imaging.

Concepts: Chemical reaction, Molecule, Positron emission tomography, Positron, Atom, Positron emission, Carbon-11, Fluorine-18


Aggregates of hyperphosphorylated tau (PHF-tau), such as neurofibrillary tangles, are linked to the degree of cognitive impairment in Alzheimer’s disease. We have developed a novel PHF-tau targeting positron emission tomography imaging agent, [F-18]-T807, which may be useful for imaging Alzheimer’s disease and other tauopathies. Here, we describe the first human brain images with [F-18]-T807.

Concepts: Alzheimer's disease, Positron emission tomography, Neuroimaging, Positron, Single photon emission computed tomography, Neurofibrillary tangle, Carbon-11, Fluorine-18


Positron Emission Tomography (PET) is a functional imaging technique that, combined with computerized tomography (PET-CT), is increasingly used in lymphoma. Most subtypes accumulate fluorodeoxyglucose (FDG) and the increased sensitivity of PET-CT, especially for extranodal disease, compared to CT, makes PET-CT an attractive staging tool. The availability of a staging PET-CT scan also improves the accuracy of subsequent response assessment. ‘Interim’ PET-CT can be used to assess early response and end-of-treatment PET-CT assesses remission. Clinical trials are currently seeking to establish whether the predictive value of PET-CT can be successfully used to guide individual treatment to reduce toxicity and/or to improve outcomes. Standardized methods for performing and reporting PET have been developed in the context of trials. The role of PET in transplantation selection is currently evolving, as it appears to be more accurate and prognostic than CT. The role of FDG PET-CT throughout the management course in patients with lymphoma is explored in this review, with areas discussed that may limit the use of PET-CT imaging which clinicians should be familiar with to inform practice.

Concepts: Lung cancer, Medical imaging, Positron emission tomography, Neuroimaging, Positron, Radiology, Fludeoxyglucose, Fluorine-18


The increasing availability of the long half-life positron emitter Zr-89 (half life 78.4 h) suggests that it is a strong candidate for cell labelling and hence cell tracking using positron emission tomography. The aim was to produce a range of neutral ZrL4 lipophilic complexes for cell labelling which could be prepared under radiopharmaceutical conditions. This was achieved when the ligand was oxine, tropolone or ethyl maltol. The complexes can be prepared in high yield from zirconium(iv) precursors in hydrochloric or oxalic acid solution. The oxinate and tropolonate complexes were the most amenable to chromatographic characterisation, and HPLC and ITLC protocols have been established to monitor their radiochemical purity. The radiochemical synthesis and quality control of (89)Zr(oxinate)4 is reported as well as preliminary cell labelling data for the oxinate, tropolonate and ethyl maltolate complexes which indicates that (89)Zr(oxinate)4 is the most promising candidate for further evaluation.

Concepts: Acid, Positron emission tomography, Positron, Radioactive decay, Positron emission, Oxalic acid, Carbon-11, Fluorine-18