SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Fitness

268

The strikingly high incidence of obstructed labor due to the disproportion of fetal size and the mother’s pelvic dimensions has puzzled evolutionary scientists for decades. Here we propose that these high rates are a direct consequence of the distinct characteristics of human obstetric selection. Neonatal size relative to the birth-relevant maternal dimensions is highly variable and positively associated with reproductive success until it reaches a critical value, beyond which natural delivery becomes impossible. As a consequence, the symmetric phenotype distribution cannot match the highly asymmetric, cliff-edged fitness distribution well: The optimal phenotype distribution that maximizes population mean fitness entails a fraction of individuals falling beyond the “fitness edge” (i.e., those with fetopelvic disproportion). Using a simple mathematical model, we show that weak directional selection for a large neonate, a narrow pelvic canal, or both is sufficient to account for the considerable incidence of fetopelvic disproportion. Based on this model, we predict that the regular use of Caesarean sections throughout the last decades has led to an evolutionary increase of fetopelvic disproportion rates by 10 to 20%.

Concepts: Caesarean section, Pregnancy, Gene, Evolutionary biology, Fitness, Evolution, Childbirth, Natural selection

108

Storytelling is a human universal. From gathering around the camp-fire telling tales of ancestors to watching the latest television box-set, humans are inveterate producers and consumers of stories. Despite its ubiquity, little attention has been given to understanding the function and evolution of storytelling. Here we explore the impact of storytelling on hunter-gatherer cooperative behaviour and the individual-level fitness benefits to being a skilled storyteller. Stories told by the Agta, a Filipino hunter-gatherer population, convey messages relevant to coordinating behaviour in a foraging ecology, such as cooperation, sex equality and egalitarianism. These themes are present in narratives from other foraging societies. We also show that the presence of good storytellers is associated with increased cooperation. In return, skilled storytellers are preferred social partners and have greater reproductive success, providing a pathway by which group-beneficial behaviours, such as storytelling, can evolve via individual-level selection. We conclude that one of the adaptive functions of storytelling among hunter gatherers may be to organise cooperation.

Concepts: Fitness, Human, Storytelling, Human evolution, Psychology, Egalitarianism, Human behavior, Natural selection

69

Most evolutionary thinking is based on the notion of fitness and related ideas such as fitness landscapes and evolutionary optima. Nevertheless, it is often unclear what fitness actually is, and its meaning often depends on the context. Here we argue that fitness should not be a basal ingredient in verbal or mathematical descriptions of evolution. Instead, we propose that evolutionary birth-death processes, in which individuals give birth and die at ever-changing rates, should be the basis of evolutionary theory, because such processes capture the fundamental events that generate evolutionary dynamics. In evolutionary birth-death processes, fitness is at best a derived quantity, and owing to the potential complexity of such processes, there is no guarantee that there is a simple scalar, such as fitness, that would describe long-term evolutionary outcomes. We discuss how evolutionary birth-death processes can provide useful perspectives on a number of central issues in evolution.

Concepts: Natural selection, Population genetics, Evolutionary biology, Fitness, Evolution

56

We used extensive data from a long-term study of great tits (Parus major) in the United Kingdom and Netherlands to better understand how genetic signatures of selection translate into variation in fitness and phenotypes. We found that genomic regions under differential selection contained candidate genes for bill morphology and used genetic architecture analyses to confirm that these genes, especially the collagen gene COL4A5, explained variation in bill length. COL4A5 variation was associated with reproductive success, which, combined with spatiotemporal patterns of bill length, suggested ongoing selection for longer bills in the United Kingdom. Last, bill length and COL4A5 variation were associated with usage of feeders, suggesting that longer bills may have evolved in the United Kingdom as a response to supplementary feeding.

Concepts: Phenotype, Population genetics, Fitness, Biology, Gene, Evolution, Genetics, Natural selection

47

The increasing rate of antibiotic resistance and slowing discovery of novel antibiotic treatments presents a growing threat to public health. Here, we consider a simple model of evolution in asexually reproducing populations which considers adaptation as a biased random walk on a fitness landscape. This model associates the global properties of the fitness landscape with the algebraic properties of a Markov chain transition matrix and allows us to derive general results on the non-commutativity and irreversibility of natural selection as well as antibiotic cycling strategies. Using this formalism, we analyze 15 empirical fitness landscapes of E. coli under selection by different β-lactam antibiotics and demonstrate that the emergence of resistance to a given antibiotic can be either hindered or promoted by different sequences of drug application. Specifically, we demonstrate that the majority, approximately 70%, of sequential drug treatments with 2-4 drugs promote resistance to the final antibiotic. Further, we derive optimal drug application sequences with which we can probabilistically ‘steer’ the population through genotype space to avoid the emergence of resistance. This suggests a new strategy in the war against antibiotic-resistant organisms: drug sequencing to shepherd evolution through genotype space to states from which resistance cannot emerge and by which to maximize the chance of successful therapy.

Concepts: Fitness, Evolutionary biology, Gene, Escherichia coli, Bacteria, Natural selection, Evolution, Antibiotic resistance

33

We previously computed that genes with de novo (DN) likely gene-disruptive (LGD) mutations in children with autism spectrum disorders (ASD) have high vulnerability: disruptive mutations in many of these genes, the vulnerable autism genes, will have a high likelihood of resulting in ASD. Because individuals with ASD have lower fecundity, such mutations in autism genes would be under strong negative selection pressure. An immediate prediction is that these genes will have a lower LGD load than typical genes in the human gene pool. We confirm this hypothesis in an explicit test by measuring the load of disruptive mutations in whole-exome sequence databases from two cohorts. We use information about mutational load to show that lower and higher intelligence quotients (IQ) affected individuals can be distinguished by the mutational load in their respective gene targets, as well as to help prioritize gene targets by their likelihood of being autism genes. Moreover, we demonstrate that transmission of rare disruptions in genes with a lower LGD load occurs more often to affected offspring; we show transmission originates most often from the mother, and transmission of such variants is seen more often in offspring with lower IQ. A surprising proportion of transmission of these rare events comes from genes expressed in the embryonic brain that show sharply reduced expression shortly after birth.

Concepts: Fitness, Biology, Evolution, Gene, Natural selection, DNA, Genetics, Gene expression

26

Many populations live in environments subject to frequent biotic and abiotic changes. Nonetheless, it is interesting to ask whether an evolving population’s mean fitness can increase indefinitely, and potentially without any limit, even in a constant environment. A recent study showed that fitness trajectories of Escherichia coli populations over 50 000 generations were better described by a power-law model than by a hyperbolic model. According to the power-law model, the rate of fitness gain declines over time but fitness has no upper limit, whereas the hyperbolic model implies a hard limit. Here, we examine whether the previously estimated power-law model predicts the fitness trajectory for an additional 10 000 generations. To that end, we conducted more than 1100 new competitive fitness assays. Consistent with the previous study, the power-law model fits the new data better than the hyperbolic model. We also analysed the variability in fitness among populations, finding subtle, but significant, heterogeneity in mean fitness. Some, but not all, of this variation reflects differences in mutation rate that evolved over time. Taken together, our results imply that both adaptation and divergence can continue indefinitely-or at least for a long time-even in a constant environment.

Concepts: Genetics, Fitness, Biology, Mutation, Evolutionary biology, Escherichia coli, Natural selection, Evolution

25

Copulation is the goal of the courtship process, crucial to reproductive success and evolutionary fitness. Identifying the circuitry underlying copulation is a necessary step towards understanding universal principles of circuit operation, and how circuit elements are recruited into the production of ordered action sequences. Here, we identify key sex-specific neurons that mediate copulation in Drosophila, and define a sexually dimorphic motor circuit in the male abdominal ganglion that mediates the action sequence of initiating and terminating copulation. This sexually dimorphic circuit composed of three neuronal classes - motor neurons, interneurons and mechanosensory neurons - controls the mechanics of copulation. By correlating the connectivity, function and activity of these neurons we have determined the logic for how this circuitry is coordinated to generate this male-specific behavior, and sets the stage for a circuit-level dissection of active sensing and modulation of copulatory behavior.

Concepts: Sexual dimorphism, Ganglion, Spinal cord, Fitness, Sex, Neuron, Mating, Nervous system

19

The age trajectory of reproductive performance of many iteroparous species features an early - life increase in performance followed by a late - life senescent decline. The largest contribution of lifetime reproductive success is therefore gained at the age at which reproductive performance peaks. Using long term data on North American red squirrels we show that the environmental conditions individuals encountered could cause variation among individuals in the “height” and timing of this peak, contributing to life history variation and fitness in this population that experiences irregular resource pulses. As expected, high peak effort was positively associated with lifetime reproductive output up to a high level of annual effort. Furthermore, individuals that matched their peak reproductive effort to an anticipated resource pulse gained substantial fitness benefits through recruiting more offspring over their lifetime. Individual variation in peak reproductive effort thus has strong potential to shape life history evolution by facilitating adaptation to fluctuating environments.

Concepts: Evolutionary biology, Fitness, Life, Species, Organism, Natural selection, Reproduction, Evolution

18

Experimental studies of evolution have increased greatly in recent years, stimulated by the growing power of genomic tools. However, organismal fitness remains the ultimate metric for interpreting these experiments, and the dynamics of fitness remain poorly understood over long timescales. Here, we examine fitness trajectories for 12 Escherichia coli populations during 50,000 generations. Mean fitness appears to increase without bound, consistent with a power law. We also derive this power-law relation theoretically by incorporating clonal interference and diminishing-returns epistasis into a dynamical model of changes in mean fitness over time.

Concepts: Fitness, Population genetics, Model organism, Natural selection, Genetics, Escherichia coli, Gene, Evolution