SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Fish farming

30

The disease Heart and Skeletal Muscle Inflammation (HSMI) is causing substantial economic losses to the Norwegian salmon farming industry where the causative agent, piscine orthoreovirus (PRV), is reportedly spreading from farmed to wild Atlantic salmon (Salmo salar) with as yet undetermined impacts. To assess if PRV infection is epidemiologically linked between wild and farmed salmon in the eastern Pacific, wild Pacific salmon (Oncorhynchus sp.) from regions designated as high or low exposure to salmon farms and farmed Atlantic salmon reared in British Columbia (BC) were tested for PRV. The proportion of PRV infection in wild fish was related to exposure to salmon farms (p = 0.0097). PRV was detected in: 95% of farmed Atlantic salmon, 37-45% of wild salmon from regions highly exposed to salmon farms and 5% of wild salmon from the regions furthest from salmon farms. The proportion of PRV infection was also significantly lower (p = 0.0008) where wild salmon had been challenged by an arduous return migration into high-elevation spawning habitat. Inter-annual PRV infection declined in both wild and farmed salmon from 2012-2013 (p ≤ 0.002). These results suggest that PRV transfer is occurring from farmed Atlantic salmon to wild Pacific salmon, that infection in farmed salmon may be influencing infection rates in wild salmon, and that this may pose a risk of reduced fitness in wild salmon impacting their survival and reproduction.

Concepts: Fish, Salmon, Salmonidae, Pacific Ocean, Aquaculture, Atlantic salmon, Salmo, Fish farming

28

Salmon lice, Lepeophtheirus salmonis, are naturally occurring parasites of salmon in sea water. Intensive salmon farming provides better conditions for parasite growth and transmission compared with natural conditions, creating problems for both the salmon farming industry and, under certain conditions, wild salmonids. Salmon lice originating from farms negatively impact wild stocks of salmonids, although the extent of the impact is a matter of debate. Estimates from Ireland and Norway indicate an odds ratio of 1.1:1-1.2:1 for sea lice treated Atlantic salmon smolt to survive sea migration compared to untreated smolts. This is considered to have a moderate population regulatory effect. The development of resistance against drugs most commonly used to treat salmon lice is a serious concern for both wild and farmed fish. Several large initiatives have been taken to encourage the development of new strategies, such as vaccines and novel drugs, for the treatment or removal of salmon lice from farmed fish. The newly sequenced salmon louse genome will be an important tool in this work. The use of cleaner fish has emerged as a robust method for controlling salmon lice, and aquaculture production of wrasse is important towards this aim. Salmon lice have large economic consequences for the salmon industry, both as direct costs for the prevention and treatment, but also indirectly through negative public opinion.

Concepts: Parasites, Fish, Salmon, Aquaculture, Fish farming, Sea louse, Salmon louse, Aquaculture of salmon

2

Four marine fish species are among the most important on the world market: cod, salmon, tuna, and sea bass. While the supply of North American and European markets for two of these species - Atlantic salmon and European sea bass - mainly comes from fish farming, Atlantic cod and tunas are mainly caught from wild stocks. We address the question what will be the status of these wild stocks in the midterm future, in the year 2048, to be specific. Whereas the effects of climate change and ecological driving forces on fish stocks have already gained much attention, our prime interest is in studying the effects of changing economic drivers, as well as the impact of variable management effectiveness. Using a process-based ecological-economic multispecies optimization model, we assess the future stock status under different scenarios of change. We simulate (i) technological progress in fishing, (ii) increasing demand for fish, and (iii) increasing supply of farmed fish, as well as the interplay of these driving forces under different scenarios of (limited) fishery management effectiveness. We find that economic change has a substantial effect on fish populations. Increasing aquaculture production can dampen the fishing pressure on wild stocks, but this effect is likely to be overwhelmed by increasing demand and technological progress, both increasing fishing pressure. The only solution to avoid collapse of the majority of stocks is institutional change to improve management effectiveness significantly above the current state. We conclude that full recognition of economic drivers of change will be needed to successfully develop an integrated ecosystem management and to sustain the wild fish stocks until 2048 and beyond.

Concepts: Fish, Salmon, Aquaculture, Atlantic salmon, Overfishing, Fish farming, Wild fisheries, Fishery

2

Fish farming in the Amazon has been stimulated as a solution to increase economic development. However, poorly managed fish ponds have been sometimes associated with the presence of Anopheles spp. and consequently, with malaria transmission. In this study, we analyzed the spatial and temporal dynamics of malaria in the state of Acre (and more closely within a single county) to investigate the potential links between aquaculture and malaria transmission in this region. At the state level, we classified the 22 counties into three malaria endemicity patterns, based on the correlation between notification time series. Furthermore, the study period (2003-2013) was divided into two phases (epidemic and post-epidemic). Higher fish pond construction coincided both spatially and temporally with increased rate of malaria notification. Within one malaria endemic county, we investigated the relationship between the geolocation of malaria cases (2011-2012) and their distance to fish ponds. Entomological surveys carried out in these ponds provided measurements of anopheline abundance that were significantly associated with the abundance of malaria cases within 100 m of the ponds (P < 0.005; r = 0.39). These results taken together suggest that fish farming contributes to the maintenance of high transmission levels of malaria in this region.

Concepts: Epidemiology, Infectious disease, Malaria, Endemic, Aquaculture, Fish farming, Pond, Fish pond

2

A major challenge for Atlantic salmon farming in the northern hemisphere is infestation by the sea louse parasite Lepeophtheirus salmonis. The most frequent method of controlling these sea louse infestations is through the use of chemical treatments. However, most major salmon farming areas have observed resistance to common chemotherapeutants. In terrestrial environments, many strategies employed to manage the evolution of resistance involve the use of refugia, where a portion of the population is left untreated to maintain susceptibility. While refugia have not been deliberately used in Atlantic salmon farming, wild salmon populations that migrate close to salmon farms may act as natural refugia. In this paper we describe an agent-based model that explores the influence of different sizes of wild salmon populations on resistance evolution in sea lice on a salmon farm. Using the model, we demonstrate that wild salmon populations can act as refugia that limit the evolution of resistance in the sea louse populations. Additionally, we demonstrate that an increase in the size of the population of wild salmon results in an increased effect in slowing the evolution of resistance. We explore the effect of a population fitness cost associated with resistance, finding that in some cases it substantially reduces the speed of evolution to chemical treatments.

Concepts: Salmon, Pacific Ocean, Farm, Aquaculture, Fish farming, Sea louse, Salmon louse, Aquaculture of salmon

1

In classical aquaponics (coupled aquaponic systems, 1-loop systems) the production of fish in recirculating aquaculture systems (RAS) and plants in hydroponics are combined in a single loop, entailing systemic compromises on the optimal production parameters (e.g. pH). Recently presented decoupled aquaponics (2-loop systems) have been awarded for eliminating major bottlenecks. In a pilot study, production in an innovative decoupled aquaponic system was compared with a coupled system and, as a control, a conventional RAS, assessing growth parameters of fish (FCR, SGR) and plants over an experimental period of 5 months. Soluble nutrients (NO3–N, NO2–N, NH4+-N, PO43-, K+, Ca2+, Mg2+, SO42-, Cl2- and Fe2+), elemental composition of plants, fish and sludge (N, P, K, Ca, Mg, Na, C), abiotic factors (temperature, pH, oxygen, and conductivity), fertilizer and water consumption were determined. Fruit yield was 36% higher in decoupled aquaponics and pH and fertilizer management was more effective, whereas fish production was comparable in both systems. The results of this pilot study clearly illustrate the main advantages of decoupled, two-loop aquaponics and demonstrate how bottlenecks commonly encountered in coupled aquaponics can be managed to promote application in aquaculture.

Concepts: Fish, Environmental science, Aquaculture, Fish farming, Biotic component, Hydroponics, Abiotic component, Aquaponics

1

Although increased disease severity driven by intensive farming practices is problematic in food production, the role of evolutionary change in disease is not well understood in these environments. Experiments on parasite evolution are traditionally conducted using laboratory models, often unrelated to economically important systems. We compared how the virulence, growth and competitive ability of a globally important fish pathogen, Flavobacterium columnare, change under intensive aquaculture. We characterized bacterial isolates from disease outbreaks at fish farms during 2003-2010, and compared F. columnare populations in inlet water and outlet water of a fish farm during the 2010 outbreak. Our data suggest that the farming environment may select for bacterial strains that have high virulence at both long and short time scales, and it seems that these strains have also evolved increased ability for interference competition. Our results are consistent with the suggestion that selection pressures at fish farms can cause rapid changes in pathogen populations, which are likely to have long-lasting evolutionary effects on pathogen virulence. A better understanding of these evolutionary effects will be vital in prevention and control of disease outbreaks to secure food production.

Concepts: Immune system, Natural selection, Bacteria, Evolution, Salmon, Aquaculture, Fish farming, Competitive exclusion principle

1

Sea lice are copepod ectoparasites with vast reproductive potential and affect a wide variety of fish species. The number of parasites causing morbidity is proportional to fish size. Natural low host density restricts massive parasite dispersal. However, expanded salmon farming has shifted the conditions in favor of the parasite. Salmon farms are often situated near wild salmonid migrating routes, with smolts being particularly vulnerable to sea lice infestation. In order to protect both farmed and wild salmonids passing or residing in the proximity of the farms, several measures are taken. Medicinal treatment of farmed fish has been the most predictable and efficacious, leading to extensive use of the available compounds. This has resulted in drug-resistant parasites occurring on farmed and possibly wild salmonids.

Concepts: Parasitism, Salmon, Farm, Aquaculture, Fish farming, Trout, Salvelinus, Aquaculture of salmon

1

The measurement of species diversity represents a powerful tool for assessing the impacts of human activities on marine ecosystems. Traditionally, the impact of fish farming on the coastal environment is evaluated by monitoring the dynamics of macrobenthic infaunal populations. However, taxonomic sorting and morphology-based identification of the macrobenthos demands highly trained specialists and is extremely time-consuming and costly, making it unsuitable for large-scale biomonitoring efforts involving numerous samples. Here, we propose to alleviate this laborious task by developing protist metabarcoding tools based on next-generation sequencing (NGS) of environmental DNA and RNA extracted from sediment samples. In this study, we analysed the response of benthic foraminiferal communities to the variation of environmental gradients associated with salmon farms in Scotland. We investigated the foraminiferal diversity based on ribosomal minibarcode sequences generated by the Illumina NGS technology. We compared the molecular data with morphospecies counts and with environmental gradients, including distance to cages and redox used as a proxy for sediment oxygenation. Our study revealed high variations between foraminiferal communities collected in the vicinity of fish farms and at distant locations. We found evidence for species richness decrease in impacted sites, especially visible in the RNA data. We also detected some candidate bioindicator foraminiferal species. Based on this proof-of-concept study, we conclude that NGS metabarcoding using foraminifera and other protists has potential to become a new tool for surveying the impact of aquaculture and other industrial activities in the marine environment. This article is protected by copyright. All rights reserved.

Concepts: Biodiversity, Eukaryote, Animal, Salmon, Aquaculture, Fish farming, Copyright, Foraminifera

0

Organic waste released from fin-fish aquaculture is being dispersed further as industry growth has led to the expansion of open net cages in dynamic coastal locations. Here we investigate the response of three mobile epibenthic invertebrates (brittle stars, urchins and brown crabs), whose natural habitats overlap with large scale coastal salmon farming. Using fatty acids and stable isotopes, we found these organisms displayed decreases in δ13C and δ15N and elevated levels of C18fatty acids reflective of terrestrial components of fin-fish feeds. Furthermore, we found these three species consume aquaculture organic waste not only directly adjacent to the farm vicinity (0-20 m from cage edge) but up to 1 km away in the case of brittle stars and brown crabs. As aquaculture feeds shift to contain more terrestrial ingredients, the biochemistry of fauna feeding on organic waste is also being shifted, the result of these changes is currently unclear.

Concepts: Nutrition, Fatty acid, Hydrogen, Biochemistry, Salmon, Aquaculture, Fish farming, Aquaculture of salmon