Discover the most talked about and latest scientific content & concepts.

Concept: Firmicutes


BACKGROUND: A recent study using a rat model found significant differences at the time of diabetes onset in the bacterial communities responsible for type 1 diabetes modulation. We hypothesized that type 1 diabetes in humans could also be linked to a specific gut microbiota. Our aim was to quantify and evaluate the difference in the composition of gut microbiota between children with type 1diabetes and healthy children and to determine the possible relationship of the gut microbiota of children with type 1 diabetes with the glycemic level. METHODS: A case-control study was carried out with 16 children with type 1 diabetes and 16 healthy children. The fecal bacteria composition was investigated by polymerase chain reaction-denaturing gradient gel electrophoresis and real-time quantitative polymerase chain reaction. RESULTS: The mean similarity index was 47.39% for the healthy children and 37.56% for the children with diabetes, whereas the intergroup similarity index was 26.69%. In the children with diabetes, the bacterial number of Actinobacteria and Firmicutes, and the Firmicutes to Bacteroidetes ratio were all significantly decreased, with the quantity of Bacteroidetes significantly increased with respect to healthy children. At the genus level, we found a significant increase in the number of Clostridium, Bacteroides and Veillonella and a significant decrease in the number of Lactobacillus, Bifidobacterium, Blautia coccoides/Eubacterium rectale group and Prevotella in the children with diabetes. We also found that the number of Bifidobacterium and Lactobacillus, and the Firmicutes to Bacteroidetes ratio correlated negatively and significantly with the plasma glucose level while the quantity of Clostridium correlated positively and significantly with the plasma glucose level in the diabetes group. CONCLUSIONS: This is the first study showing that type 1 diabetes is associated with compositional changes in gut microbiota. The significant differences in the number of Bifidobacterium, Lactobacillus and Clostridium and in the Firmicutes to Bacteroidetes ratio observed between the two groups could be related to the glycemic level in the group with diabetes. Moreover, the quantity of bacteria essential to maintain gut integrity was significantly lower in the children with diabetes than the healthy children. These findings could be useful for developing strategies to control the development of type 1 diabetes by modifying the gut microbiota.

Concepts: Bacteria, Gut flora, Polymerase chain reaction, Nutrition, Enzyme, Diabetes mellitus, Firmicutes, Bacteroidetes


Pyrosequencing analysis of intestinal microflora from healthy Thai vegetarians and non-vegetarians exhibited 893 OTUs covering 189 species. The strong species indicator of vegetarians and non-vegetarians were Prevotella copri and Bacteroides vulgatus as well as bacterium closed to Escherichia hermanii with % relative abundance of 16.9 and 4.5-4.7, respectively. Core gut microbiota of vegetarian and non-vegetarian group consisted of 11 and 20 different bacterial species, respectively, belonging to Actinobacteria, Firmicutes and Proteobacteria commonly found in both groups. Two species of Faecalibacterium prausnitzii and Gemmiger formicilis had prevalence of 100% in both groups. Three species of Clostridium nexile, Eubacterium eligens and P. copri showed up in most vegetarians while more diversity of Collinsella aerofaciens, Ruminococcus torques, various species of Bacteroides, Parabacteroides, Escherichia, different species of Clostridium and Eubacterium were found in most non-vegetarians. Considering the correlation of personal characters, consumption behavior and microbial groups, the age of non-vegetarians showed strong positive correlation coefficient of 0.54 (p=0.001) to Bacteroides uniformis while exhibited a moderate ones to Alistipes finegoldii and B. vulgatus. Only positive moderate correlation of body mass index (BMI) and Parabacteroides distasonis appeared. Based on significant abundance of potential pathogens, the microbiota of non-vegetarian group showed the abundance of potential pathogen varieties of Bilophila wadsworthia, Escherichia coli and E. hermannii while the one of vegetarian served for only Klebsiella pneumonia. These results implied that the microbiota of vegetarian with high abundance of P. copri and low potential pathogen variety would be a way to maintain healthy in Thai.

Concepts: Bacteria, Gut flora, Microbiology, Pneumonia, Escherichia coli, Enterobacteriaceae, Firmicutes, Human flora


Perturbations to the gut microbiota can result in a loss of colonization resistance against gastrointestinal pathogens such as Clostridium difficile. Although C. difficile infection is commonly associated with antibiotic use, the precise alterations to the microbiota associated with this loss in function are unknown. We used a variety of antibiotic perturbations to generate a diverse array of gut microbiota structures, which were then challenged with C. difficile spores. Across these treatments we observed that C. difficile resistance was never attributable to a single organism, but rather it was the result of multiple microbiota members interacting in a context-dependent manner. Using relative abundance data, we built a machine learning regression model to predict the levels of C. difficile that were found 24 h after challenging the perturbed communities. This model was able to explain 77.2% of the variation in the observed number of C. difficile per gram of feces. This model revealed important bacterial populations within the microbiota, which correlation analysis alone did not detect. Specifically, we observed that populations associated with the Porphyromonadaceae, Lachnospiraceae, Lactobacillus, and Alistipes were protective and populations associated with Escherichia and Streptococcus were associated with high levels of colonization. In addition, a population affiliated with the Akkermansia indicated a strong context dependency on other members of the microbiota. Together, these results indicate that individual bacterial populations do not drive colonization resistance to C. difficile. Rather, multiple diverse assemblages act in concert to mediate colonization resistance.

Concepts: Bacteria, Gut flora, Antibiotic resistance, Escherichia coli, Antibiotic, Probiotic, Clostridium difficile, Firmicutes


The ‘microgenderome’ provides a paradigm shift that highlights the role of sex differences in the host-microbiota interaction relevant for autoimmune and neuro-immune conditions. Analysis of cross-sectional self-report and faecal microbial data from 274 patients with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) suggests that commensal gut microorganisms may play both protective and deleterious roles in symptom expression. Results revealed significant sex-specific interactions between Firmicutes (Clostridium, Streptococcus, Lactobacillus and Enterococcus) and ME/CFS symptoms (including neurological, immune and mood symptoms), regardless of compositional similarity in microbial levels across the sexes. Extending animal studies, we provide support for the microgenderome in a human clinical population. Applied and mechanistic research needs to consider sex-interactions when examining the composition and function of human microbiota.

Concepts: Archaea, Male, Bacteria, Gut flora, Microbiology, Sex, Fatigue, Firmicutes


The mammalian gut microbiota harbors a diverse ecosystem where hundreds of bacterial species interact with each other and their host. Given that bacteria use signals to communicate and regulate group behaviors (quorum sensing), we asked whether such communication between different commensal species can influence the interactions occurring in this environment. We engineered the enteric bacterium, Escherichia coli, to manipulate the levels of the interspecies quorum sensing signal, autoinducer-2 (AI-2), in the mouse intestine and investigated the effect upon antibiotic-induced gut microbiota dysbiosis. E. coli that increased intestinal AI-2 levels altered the composition of the antibiotic-treated gut microbiota, favoring the expansion of the Firmicutes phylum. This significantly increased the Firmicutes/Bacteroidetes ratio, to oppose the strong effect of the antibiotic, which had almost cleared the Firmicutes. This demonstrates that AI-2 levels influence the abundance of the major phyla of the gut microbiota, the balance of which is known to influence human health.

Concepts: Archaea, Bacteria, Gut flora, Antibiotic resistance, Escherichia coli, Quorum sensing, Firmicutes, Autoinducer-2


The oral microbiome, which is closely associated with many diseases, and the resident pathogenic oral bacteria, which can be transferred by close physical contact, are important public health considerations. Although the dog is the most common companion animal, the composition of the canine oral microbiome, which may include human pathogenic bacteria, and its relationship with that of their owners are unclear. In this study, 16S rDNA pyrosequencing was used to compare the oral microbiomes of 10 dogs and their owners and to identify zoonotic pathogens. Pyrosequencing revealed 246 operational taxonomic units in the 10 samples, representing 57 genera from eight bacterial phyla. Firmicutes (57.6%), Proteobacteria (21.6%), Bacteroidetes (9.8%), Actinobacteria (7.1%), and Fusobacteria (3.9%) were the predominant phyla in the human oral samples, whereas Proteobacteria (25.7%), Actinobacteria (21%), Bacteroidetes (19.7%), Firmicutes (19.3%), and Fusobacteria (12.3%) were predominant in the canine oral samples. The predominant genera in the human samples were Streptococcus (43.9%), Neisseria (10.3%), Haemophilus (9.6%), Prevotella (8.4%), and Veillonella (8.1%), whereas the predominant genera in the canine samples were Actinomyces (17.2%), Unknown (16.8), Porphyromonas (14.8), Fusobacterium (11.8), and Neisseria (7.2%). The oral microbiomes of dogs and their owners were appreciably different, and similarity in the microbiomes of canines and their owners was not correlated with residing in the same household. Oral-to-oral transfer of Neisseria shayeganii, Porphyromonas canigingivalis, Tannerella forsythia, and Streptococcus minor from dogs to humans was suspected. The finding of potentially zoonotic and periodontopathic bacteria in the canine oral microbiome may be a public health concern.

Concepts: Bacteria, Gut flora, Microbiology, Pathogen, Proteobacteria, Pathogenic bacteria, Firmicutes, Actinobacteria


The use of glyphosate modifies the environment which stresses the living microorganisms. The aim of the present study was to determine the real impact of glyphosate on potential pathogens and beneficial members of poultry microbiota in vitro. The presented results evidence that the highly pathogenic bacteria as Salmonella Entritidis, Salmonella Gallinarum, Salmonella Typhimurium, Clostridium perfringens and Clostridium botulinum are highly resistant to glyphosate. However, most of beneficial bacteria as Enterococcus faecalis, Enterococcus faecium, Bacillus badius, Bifidobacterium adolescentis and Lactobacillus spp. were found to be moderate to highly susceptible. Also Campylobacter spp. were found to be susceptible to glyphosate. A reduction of beneficial bacteria in the gastrointestinal tract microbiota by ingestion of glyphosate could disturb the normal gut bacterial community. Also, the toxicity of glyphosate to the most prevalent Enterococcus spp. could be a significant predisposing factor that is associated with the increase in C. botulinum-mediated diseases by suppressing the antagonistic effect of these bacteria on clostridia.

Concepts: Bacteria, Gut flora, Microbiology, Pathogen, Enterococcus, Clostridium, Firmicutes, Clostridium botulinum


OBJECTIVES:To provide a comprehensive analysis of the fecal microbiota in infants with colic, as compared with control infants, during their first 100 days of life.METHODS:Microbial DNA of >200 samples from 12 infants with colic and 12 age-matched control infants was extracted and hybridized to a phylogenetic microarray.RESULTS:Microbiota diversity gradually increased after birth only in the control group; moreover, in the first weeks, the diversity of the colic group was significantly lower than that of the control group. The stability of the successive samples also appeared to be significantly lower in the infants with colic for the first weeks. Further analyses revealed which bacterial groups were responsible for colic-related differences in microbiota at age 1 or 2 weeks, the earliest ages with significant differences. Proteobacteria were significantly increased in infants with colic compared with control infants, with a relative abundance that was more than twofold. In contrast, bifidobacteria and lactobacilli were significantly reduced in infants with colic. Moreover, the colic phenotype correlated positively with specific groups of proteobacteria, including bacteria related to Escherichia, Klebsiella, Serratia, Vibrio, Yersinia, and Pseudomonas, but negatively with bacteria belonging to the Bacteroidetes and Firmicutes phyla, the latter of which includes some lactobacilli and canonical groups known to produce butyrate and lactate.CONCLUSIONS:The results indicate the presence of microbial signatures in the first weeks of life in infants who later develop colic. These microbial signatures may be used to understand the excessive crying. The results offer opportunities for early diagnostics as well as for developing specific therapies.

Concepts: Bacteria, Gut flora, Microbiology, Escherichia coli, Enterobacteriaceae, Proteobacteria, Lactobacillus, Firmicutes


Metagenomic analyses have indicated that the female bladder harbors an indigenous microbiota. However, there are few cultured reference strains with sequenced genomes available for functional and experimental analyses. Here we isolate and genome-sequence 149 bacterial strains from catheterized urine of 77 women. This culture collection spans 78 species, representing approximately two thirds of the bacterial diversity within the sampled bladders, including Proteobacteria, Actinobacteria, and Firmicutes. Detailed genomic and functional comparison of the bladder microbiota to the gastrointestinal and vaginal microbiotas demonstrates similar vaginal and bladder microbiota, with functional capacities that are distinct from those observed in the gastrointestinal microbiota. Whole-genome phylogenetic analysis of bacterial strains isolated from the vagina and bladder in the same women identifies highly similar Escherichia coli, Streptococcus anginosus, Lactobacillus iners, and Lactobacillus crispatus, suggesting an interlinked female urogenital microbiota that is not only limited to pathogens but is also characteristic of health-associated commensals.

Concepts: Bacteria, Gut flora, Microbiology, Uterus, Escherichia coli, Urinary bladder, Urogenital sinus, Firmicutes


Plant expansin proteins induce plant cell wall extension and have the ability to extend and disrupt cellulose. In addition, these proteins show synergistic activity with cellulases during cellulose hydrolysis. BsEXLX1 originating from Bacillus subtilis is a structural homolog of a β-expansin produced by Zea mays (ZmEXPB1). The Langmuir isotherm for binding of BsEXLX1 to microcrystalline cellulose (i.e., Avicel) revealed that the equilibrium binding constant of BsEXLX1 to Avicel was similar to those of other Type A surface-binding carbohydrate-binding modules (CBMs) to microcrystalline cellulose, and the maximum number of binding sites on Avicel for BsEXLX1 was also comparable to those on microcrystalline cellulose for other Type A CBMs. BsEXLX1 did not bind to cellooligosaccharides, which is consistent with the typical binding behavior of Type A CBMs. The preferential binding pattern of a plant expansin, ZmEXPB1, to xylan, compared to cellulose was not exhibited by BsEXLX1. In addition, the binding capacities of cellulose and xylan for BsEXLX1 were much lower than those for CtCBD3. Biotechnol. Bioeng. 2013; 110: 401-407. © 2012 Wiley Periodicals, Inc.

Concepts: Cell, Bacteria, Cell wall, Polysaccharide, Bacillus, Cellulose, Hydrolysis, Firmicutes