SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Film

192

Human beings continuously emit chemicals into the air by breath and through the skin. In order to determine whether these emissions vary predictably in response to audiovisual stimuli, we have continuously monitored carbon dioxide and over one hundred volatile organic compounds in a cinema. It was found that many airborne chemicals in cinema air varied distinctively and reproducibly with time for a particular film, even in different screenings to different audiences. Application of scene labels and advanced data mining methods revealed that specific film events, namely “suspense” or “comedy” caused audiences to change their emission of specific chemicals. These event-type synchronous, broadcasted human chemosignals open the possibility for objective and non-invasive assessment of a human group response to stimuli by continuous measurement of chemicals in air. Such methods can be applied to research fields such as psychology and biology, and be valuable to industries such as film making and advertising.

Concepts: Oxygen, Carbon dioxide, Species, Carbon, Chemical compound, Volatile organic compound, Film, Film director

153

Despite the ongoing need for shark conservation and management, prevailing negative sentiments marginalize these animals and legitimize permissive exploitation. These negative attitudes arise from an instinctive, yet exaggerated fear, which is validated and reinforced by disproportionate and sensationalistic news coverage of shark ‘attacks’ and by highlighting shark-on-human violence in popular movies and documentaries. In this study, we investigate another subtler, yet powerful factor that contributes to this fear: the ominous background music that often accompanies shark footage in documentaries. Using three experiments, we show that participants rated sharks more negatively and less positively after viewing a 60-second video clip of swimming sharks set to ominous background music, compared to participants who watched the same video clip set to uplifting background music, or silence. This finding was not an artifact of soundtrack alone because attitudes toward sharks did not differ among participants assigned to audio-only control treatments. This is the first study to demonstrate empirically that the connotative attributes of background music accompanying shark footage affect viewers' attitudes toward sharks. Given that nature documentaries are often regarded as objective and authoritative sources of information, it is critical that documentary filmmakers and viewers are aware of how the soundtrack can affect the interpretation of the educational content.

Concepts: Film, Documentary film, Ambient music, Sharks

153

INTRODUCTION. Since its earliest days, cinema has been used in the teaching of neurology both to illustrate the professor’s explanations and to make learning easier for students. AIM. To analyse some of the first applications of cinema to the teaching and learning of neurology. DEVELOPMENT. Shortly after the birth of the film projector it became apparent that it could be a valuable aid in teaching medicine, and especially neurology. Initially, actual recordings made by doctors themselves were used, and later documentaries, short films and feature films were employed as means of showing diagnostic and therapeutic methods, as well as different pathological signs, such as movement disorders. The intention was not to replace other methodologies but instead to complement them and to make the process of acquiring knowledge easier. CONCLUSIONS. Applying cinema in teaching is a useful way to portray the contents of different subjects, especially in the field of neurology, and to favour the acquisition of both specific and cross-disciplinary competences, with very positive results being obtained among students.

Concepts: Medicine, Education, Learning, Film, Feature film, Movie projector, Movie theater, Short film

52

The perception of facial expressions and objects at a distance are entrenched psychological research venues, but their intersection is not. We were motivated to study them together because of their joint importance in the physical composition of popular movies-shots that show a larger image of a face typically have shorter durations than those in which the face is smaller. For static images, we explore the time it takes viewers to categorize the valence of different facial expressions as a function of their visual size. In two studies, we find that smaller faces take longer to categorize than those that are larger, and this pattern interacts with local background clutter. More clutter creates crowding and impedes the interpretation of expressions for more distant faces but not proximal ones. Filmmakers at least tacitly know this. In two other studies, we show that contemporary movies lengthen shots that show smaller faces, and even more so with increased clutter.

Concepts: Psychology, Function, Face, Faces, Paul Ekman, Film, Facial expression

38

In the media, numerous public figures have reported involuntary emotional outbursts arising from watching films on planes, resembling neurological phenomena such as pseudobulbar affect. Putative risk factors put forward include altitude, mild hypoxia, or alcohol. Our objective was to determine whether watching a film on an airplane is really more likely to induce involuntary, uncontrollable, or surprising crying than watching one on the ground, described in some social media as “altitude-adjusted lachrymosity syndrome” (AALS), or whether this is a pseudo-phenomena.

Concepts: Psychiatry, Emotion, Film, Tears, Art, Mass media, Tears in Heaven

32

Materials that adapt dynamically to environmental changes are currently limited to two-state switching of single properties, and only a small number of strategies that may lead to materials with continuously adjustable characteristics have been reported. Here we introduce adaptive surfaces made of a liquid film supported by a nanoporous elastic substrate. As the substrate deforms, the liquid flows within the pores, causing the smooth and defect-free surface to roughen through a continuous range of topographies. We show that a graded mechanical stimulus can be directly translated into finely tuned, dynamic adjustments of optical transparency and wettability. In particular, we demonstrate simultaneous control of the film’s transparency and its ability to continuously manipulate various low-surface-tension droplets from free-sliding to pinned. This strategy should make possible the rational design of tunable, multifunctional adaptive materials for a broad range of applications.

Concepts: Mathematics, Optical fiber, Liquid, Surface tension, Surface, Film, Continuity, Transparency and translucency

28

The aim of this article is to describe a database of diphone positional frequencies in French. More specifically, we provide frequencies for word-initial, word-internal, and word-final diphones of all words extracted from a subtitle corpus of 50 million words that come from movie and TV series dialogue. We also provide intra- and intersyllable diphone frequencies, as well as interword diphone frequencies. To our knowledge, no other such tool is available to psycholinguists for the study of French sequential probabilities. This database and its new indicators should help researchers conducting new studies on speech segmentation.

Concepts: Series, Acoustics, Frequency, Cultural studies, PHP, Film, Radio

27

Recently, silver nanowires (AgNWs) have attracted considerable interest for their potential applications in flexible transparent conductive films (TCFs). One challenge for commercialization of AgNW-based TCF is low conductivity and stability caused by weak adhesion forces between AgNWs and substrate. Here, we report a highly bendable, conductive and transparent silver nanowire (AgNW) film, which was consisted of the underlying poly(diallyldimethyl-ammonium chloride) (PDDA) and AgNW composite bottom layer and a top layer-by-layer (LbL) assembled graphene oxide (GO) and PDDA over coating layer (OCL). We demonstrated that PDDA could increase the adhesion between AgNW and substrate to form a uniform AgNW network, and could also serve to improve the stability of GO OCL. Hence a highly bendable, conductive, and transparent AgNW-PDDA-GO composite TCF on a poly(ethylene terephthalate) (PET) substrate with Rs ≈ 10 Ω/sq and T ≈ 91% could be made by an all solution processable method under room temperature. In addition, our AgNW-PDDA-GO composite TCF is stable without degradation after the exposure to H2S gas or sonication.

Concepts: Nanowire, Carbon nanotube, Graphene, Solar cell, Hydrogen sulfide, Electrical conductivity, Film, Adhesion

26

Engineering surface morphology as in honeycomb-structured planar films is of great importance for providing new potential application and improved performance in biomedical fields. We demonstrate potential new applications for the uniform biocompatible golf-ball-shaped microparticles that resembles 3D feature of honeycomb-structured film. Dimple size controllable golf-ball-shaped microparticles were fabricated by microfluidic device. Surface dimples not only can act as picoliter beaker but also enhance cell adhesion without any chemical modification of the surface.

Concepts: Film, Application software, Computer algebra system, Computer animation, Euler characteristic

26

Ultrathin manganite films are widely used as active electrodes in organic spintronic devices. In this study, a scanning tunnelling microscopy (STM) investigation with atomic resolution revealed previously unknown surface features consisting of small non-stoichiometric islands. Based upon this evidence, a new mechanism for the growth of these complex materials is proposed. It is suggested that the non-stoichiometric islands result from nucleation centres that are below the critical threshold size required for stoichiometric crystalline growth. These islands represent a kinetic intermediate of single-layer growth regardless of the film thickness, and should be considered and possibly controlled in manganite thin-film applications.

Concepts: Chemistry, Microscopy, Scanning tunneling microscope, Crystallization, Film, Critical phenomena, Cinema of India, Non-stoichiometric compound