SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Fibrosis

174

Matrix stiffening and myofibroblast resistance to apoptosis are cardinal features of chronic fibrotic diseases involving diverse organ systems. The interactions between altered tissue biomechanics and cellular signaling that sustain progressive fibrosis are not well defined. In this study, we used ex vivo and in vivo approaches to define a mechanotransduction pathway involving Rho/Rho kinase (Rho/ROCK), actin cytoskeletal remodeling, and a mechanosensitive transcription factor, megakaryoblastic leukemia 1 (MKL1), that coordinately regulate myofibroblast differentiation and survival. Both in an experimental mouse model of lung fibrosis and in human subjects with idiopathic pulmonary fibrosis (IPF), we observed activation of the Rho/ROCK pathway, enhanced actin cytoskeletal polymerization, and MKL1 cytoplasmic-nuclear shuttling. Pharmacologic disruption of this mechanotransduction pathway with the ROCK inhibitor fasudil induced myofibroblast apoptosis through a mechanism involving downregulation of BCL-2 and activation of the intrinsic mitochondrial apoptotic pathway. Treatment with fasudil during the postinflammatory fibrotic phase of lung injury or genetic ablation of Mkl1 protected mice from experimental lung fibrosis. These studies indicate that targeting mechanosensitive signaling in myofibroblasts to trigger the intrinsic apoptosis pathway may be an effective approach for treatment of fibrotic disorders.

Concepts: Cancer, Signal transduction, Adenosine triphosphate, Fibrosis, Apoptosis, In vivo, Idiopathic pulmonary fibrosis, Pulmonary fibrosis

173

Pirfenidone is a novel anti-fibrotic and anti-inflammatory agent that inhibits the progression of fibrosis in animal models and in patients with idiopathic pulmonary fibrosis (IPF). We previously showed that pirfenidone inhibits the over-expression of collagen type I and of heat shock protein (HSP) 47, a collagen-specific molecular chaperone, in human lung fibroblasts stimulated with transforming growth factor (TGF)-β1 in vitro. The increased numbers of HSP47-positive type II pneumocytes as well as fibroblasts were also diminished by pirfenidone in an animal model of pulmonary fibrosis induced by bleomycin. The present study evaluates the effects of pirfenidone on collagen type I and HSP47 expression in the human alveolar epithelial cell line, A549 cells in vitro.

Concepts: Protein, Cell, Lung, Collagen, Fibrosis, Chaperone, Idiopathic pulmonary fibrosis, Heat shock protein

171

Extracellular matrix deposition and tissue scarring characterize the process of fibrosis. Transforming growth factor beta (TGFβ) and Insulin-like growth factor binding protein-3 (IGFBP-3) have been implicated in the pathogenesis of fibrosis in various tissues by inducing mesenchymal cell proliferation and extracellular matrix deposition. We identified Syndecan-2 (SDC2) as a gene induced by TGFβ in an IGFBP-3-dependent manner. TGFβ induction of SDC2 mRNA and protein required IGFBP-3. IGFBP-3 independently induced production of SDC2 in primary fibroblasts. Using an ex-vivo model of human skin in organ culture expressing IGFBP-3, we demonstrate that IGFBP-3 induces SDC2 ex vivo in human tissue. We also identified Mitogen-activated protein kinase-interacting kinase (Mknk2) as a gene induced by IGFBP-3. IGFBP-3 triggered Mknk2 phosphorylation resulting in its activation. Mknk2 independently induced SDC2 in human skin. Since IGFBP-3 is over-expressed in fibrotic tissues, we examined SDC2 levels in skin and lung tissues of patients with systemic sclerosis (SSc) and lung tissues of patients with idiopathic pulmonary fibrosis (IPF). SDC2 levels were increased in fibrotic dermal and lung tissues of patients with SSc and in lung tissues of patients with IPF. This is the first report describing elevated levels of SDC2 in fibrosis. Increased SDC2 expression is due, at least in part, to the activity of two pro-fibrotic factors, TGFβ and IGFBP-3.

Concepts: Signal transduction, Extracellular matrix, Fibrosis, Skin, Tissue, Idiopathic pulmonary fibrosis, Pulmonary fibrosis, Scleroderma

171

Myofibroblast differentiation, characterized by α-smooth muscle actin (α-SMA) expression, is a key process in organ fibrosis, and is induced by TGF-β. Here we examined whether an anti-fibrotic agent, N-acetyl-seryl-aspartyl-lysylproline (Ac-SDKP), can regulate induction of TGF-β signaling and myofibroblast differentiation as a potential key component of its anti-fibrotic mechanism in vivo and in vitro.

Concepts: Fibrosis, In vivo, Actin, In vitro

170

Type I collagen is the most abundant protein in the human body. Its excessive synthesis results in fibrosis of various organs. Fibrosis is a major medical problem without an existing cure. Excessive synthesis of type I collagen in fibrosis is primarily due to stabilization of collagen mRNAs. We recently reported that intermediate filaments composed of vimentin regulate collagen synthesis by stabilizing collagen mRNAs. Vimentin is a primary target of Withaferin-A (WF-A). Therefore, we hypothesized that WF-A may reduce type I collagen production by disrupting vimentin filaments and decreasing the stability of collagen mRNAs. This study is to determine if WF-A exhibits anti-fibrotic properties in vitro and in vivo and to elucidate the molecular mechanisms of its action. In lung, skin and heart fibroblasts WF-A disrupted vimentin filaments at concentrations of 0.5-1.5 µM and reduced 3 fold the half-lives of collagen α1(I) and α2(I) mRNAs and protein expression. In addition, WF-A inhibited TGF-β1 induced phosphorylation of TGF-β1 receptor I, Smad3 phosphorylation and transcription of collagen genes. WF-A also inhibited in vitro activation of primary hepatic stellate cells and decreased their type I collagen expression. In mice, administration of 4 mg/kg WF-A daily for 2 weeks reduced isoproterenol-induced myocardial fibrosis by 50%. Our findings provide strong evidence that Withaferin-A could act as an anti-fibrotic compound against fibroproliferative diseases, including, but not limited to, cardiac interstitial fibrosis.

Concepts: Protein, Bone, Gene, Scar, Collagen, Fibrosis, Heart, In vitro

169

Pirfenidone (PFD) is a novel antifibrotic agent approved for patients with pulmonary fibrosis. However, there are concerns regarding toxicity of the drug. In this meta-analysis, we analyzed the adverse events (AEs) of PFD for the treatment of pulmonary fibrosis.

Concepts: Pharmacology, Epidemiology, Fibrosis, Randomized controlled trial, Pharmaceutical industry, Idiopathic pulmonary fibrosis, Pulmonary fibrosis

167

Macrophage G2A and CD36 lipid receptors are thought to mediate efferocytosis following tissue injury and thereby prevent excessive inflammation which could compromise tissue repair. To test this, we subjected mice lacking G2A or CD36 receptors to bleomycin-induced lung injury and measured efferocytosis, inflammation and fibrosis. Loss of CD36 (but not G2A) delayed clearance of apoptotic alveolar cells (mean 78% increase in apoptotic cells 7 days post-injury), potentiated inflammation (mean 56% increase in lung neutrophils and 75% increase in lung KC levels 7 days post-injury, 51% increase in lung macrophages 14 days post-injury) and reduced lung fibrosis (mean 41% and 29% reduction 14 and 21 days post-injury respectively). Reduced fibrosis in CD36-/- mice was associated with lower levels of pro-fibrotic TH2 cytokines (IL-9, IL-13, IL-4), decreased expression of the M2 macrophage marker Arginase-1 and reduced interstitial myofibroblasts. G2A, on the other hand, was required for optimal clearance of apoptotic neutrophils during zymosan-induced peritoneal inflammation (50.3% increase in apoptotic neutrophils and 30.6% increase in total neutrophils 24 hours following zymosan administration in G2A-/- mice). Thus, CD36 is required for timely removal of apoptotic cells in the context of lung injury and modulates subsequent inflammatory and fibrotic processes relevant to fibrotic lung disease.

Concepts: Immune system, White blood cell, Monocyte, Fibrosis, Cell biology, Macrophage, Apoptosis, Idiopathic pulmonary fibrosis

147

There is currently no effective treatment for acute exacerbation of idiopathic pulmonary fibrosis (IPF). We herein report the case of a patient with acute exacerbation of IPF which was treated with nintedanib, an intracellular inhibitor of tyrosine kinases, and showed improvement of the condition. An 84-year-old man with IPF was admitted to our hospital because of dry cough and worsening of dyspnoea within last 1 month. He presented with hypoxemia, and chest high-resolution computed tomography (HRCT) revealed new, bilateral multifocal ground-glass opacities superimposed on the background of lung fibrosis. After exclusion of alternative causes, acute exacerbation of IPF was diagnosed and we started treatment with nintedanib of 300 mg/day. This resulted in the gradual improvement of his condition and HRCT findings without administering antibiotics or corticosteroids. Serum Krebs von den Lungen-6 and surfactant protein D levels increased at acute exacerbation and subsequently decreased. This case suggests that nintedanib therapy may have possible benefits in acute exacerbation of IPF.

Concepts: Signal transduction, Asthma, Pneumonia, Fibrosis, Idiopathic pulmonary fibrosis, Pulmonary fibrosis, Bronchitis, Sarcoidosis

147

Idiopathic pulmonary fibrosis (IPF) is a rare and fatal restrictive respiratory disease under the idiopathic lung disease (ILD) class. IPF is a form of chronic, progressive fibrosing interstitial pneumonia and has more scarring, less inflammation, and poorer prognosis than most other ILD forms. Exacerbation of IPF is rapid, with unpredictable deterioration of lung function, and is associated with short-term mortality. The American Thoracic Society (ATS) evidence-based guidelines for diagnosis and management of IPF reports that the incidence of acute exacerbations is between 5%-10%. Limited real-world evidence has been identified in the United States that assesses patterns of hospitalization, exacerbation of IPF, and the associated economic burden.

Concepts: Pulmonology, Asthma, Lung, Medical terms, Pneumonia, Fibrosis, Idiopathic pulmonary fibrosis, Pulmonary fibrosis

146

In humans, horses, and rodents, an association between pulmonary fibrotic disorders and gammaherpesvirus infection has been suggested. In dogs, canine idiopathic pulmonary fibrosis (CIPF), a progressive fibrotic lung disease of unknown origin and poorly understood pathophysiology, has been reported to occur in West Highland white terriers (WHWTs). The present study investigated the potential association between CIPF and herpesvirus infection. A PCR assay, using a mixture of degenerate and deoxyinosine-substituted primers targeting highly conserved regions of the DNA polymerase gene (DPOL) of herpesviruses, was applied on both lung and blood samples from WHWTs affected with CIPF and controls. Herpesvirus DPOL sequence could not be amplified from any of 46 lung samples (28 affected WHWTs and 18 control dogs of various breeds) and 38 blood samples (19 CIPF WHWTs and 19 control age-matched WHWTs) included. An association between CIPF and herpesvirus infection is therefore unlikely. Investigation of other causes of the disease is warranted.

Concepts: DNA, Polymerase chain reaction, Virus, Fibrosis, DNA polymerase, Idiopathic pulmonary fibrosis, Pulmonary fibrosis, West Highland White Terrier