Discover the most talked about and latest scientific content & concepts.

Concept: Fen


Ecosystem boundary retreat due to human-induced pressure is a generally observed phenomenon. However, studies that document thresholds beyond which internal resistance mechanisms are overwhelmed are uncommon. Following the Deepwater Horizon (DWH) oil spill, field studies from a few sites suggested that oiling of salt marshes could lead to a biogeomorphic feedback where plant death resulted in increased marsh erosion. We tested for spatial generality of and thresholds in this effect across 103 salt marsh sites spanning ~430 kilometers of shoreline in coastal Louisiana, Alabama, and Mississippi, using data collected as part of the natural resource damage assessment (NRDA). Our analyses revealed a threshold for oil impacts on marsh edge erosion, with higher erosion rates occurring for ~1-2 years after the spill at sites with the highest amounts of plant stem oiling (90-100%). These results provide compelling evidence showing large-scale ecosystem loss following the Deepwater Horizon oil spill. More broadly, these findings provide rare empirical evidence identifying a geomorphologic threshold in the resistance of an ecosystem to increasing intensity of human-induced disturbance.

Concepts: Petroleum, Soil, Marsh, Coast, Swamp, Salt marsh, Fen, Tidal marsh


Microcystis population and microcystin (MC) dynamics were investigated in western Lake Erie coastal wetlands and downstream beach water. A three-dimensional (3-D) model was developed to quantify how Microcystis population size and structure affect MCs.

Concepts: Marsh, Wetland, Biome, Ecosystem services, Bog, Fen, Wetlands


Salt marshes are valued for their ecosystem services, and their vulnerability is typically assessed through biotic and abiotic measurements at individual points on the landscape. However, lateral erosion can lead to rapid marsh loss as marshes build vertically. Marsh sediment budgets represent a spatially integrated measure of competing constructive and destructive forces: a sediment surplus may result in vertical growth and/or lateral expansion, while a sediment deficit may result in drowning and/or lateral contraction. Here we show that sediment budgets of eight microtidal marsh complexes consistently scale with areal unvegetated/vegetated marsh ratios (UVVR) suggesting these metrics are broadly applicable indicators of microtidal marsh vulnerability. All sites are exhibiting a sediment deficit, with half the sites having projected lifespans of less than 350 years at current rates of sea-level rise and sediment availability. These results demonstrate that open-water conversion and sediment deficits are holistic and sensitive indicators of salt marsh vulnerability.

Concepts: Marsh, Ecosystem, Swamp, Erosion, Salt marsh, Fen, Vertical integration, Tidal marsh


Wetlands are the largest natural source of atmospheric methane. Here, we assess controls on methane flux using a database of approximately 19 000 instantaneous measurements from 71 wetland sites located across subtropical, temperate, and northern high latitude regions. Our analyses confirm general controls on wetland methane emissions from soil temperature, water table, and vegetation, but also show that these relationships are modified depending on wetland type (bog, fen, or swamp), region (subarctic to temperate), and disturbance. Fen methane flux was more sensitive to vegetation and less sensitive to temperature than bog or swamp fluxes. The optimal water table for methane flux was consistently below the peat surface in bogs, close to the peat surface in poor fens, and above the peat surface in rich fens. However, the largest flux in bogs occurred when dry 30-day averaged antecedent conditions were followed by wet conditions, while in fens and swamps, the largest flux occurred when both 30-day averaged antecedent and current conditions were wet. Drained wetlands exhibited distinct characteristics, e.g. the absence of large flux following wet and warm conditions, suggesting that the same functional relationships between methane flux and environmental conditions cannot be used across pristine and disturbed wetlands. Together, our results suggest that water table and temperature are dominant controls on methane flux in pristine bogs and swamps, while other processes, such as vascular transport in pristine fens, have the potential to partially override the effect of these controls in other wetland types. Because wetland types vary in methane emissions and have distinct controls, these ecosystems need to be considered separately to yield reliable estimates of global wetland methane release.

Concepts: Soil, Marsh, Wetland, Swamp, Bog, Fen, Biodiversity Action Plan, Wetlands


Shifts in ecosystem structure have been observed over recent decades as woody plants encroach upon grasslands and wetlands globally. The migration of mangrove forests into salt marsh ecosystems is one such shift which could have important implications for global ‘blue carbon’ stocks. To date, attempts to quantify changes in ecosystem function are essentially constrained to climate-mediated pulses (30 years or less) of encroachment occurring at the thermal limits of mangroves. In this study, we track the continuous, lateral encroachment of mangroves into two south-eastern Australian salt marshes over a period of 70 years and quantify corresponding changes in biomass and belowground C stores. Substantial increases in biomass and belowground C stores have resulted as mangroves replaced salt marsh at both marine and estuarine sites. After 30 years, aboveground biomass was significantly higher than salt marsh, with biomass continuing to increase with mangrove age. Biomass increased at the mesohaline river site by 130 ± 18 Mg biomass km(-2)  yr(-1) (mean ± SE), a 2.5 times higher rate than the marine embayment site (52 ± 10 Mg biomass km(-2) yr(-1) ), suggesting local constraints on biomass production. At both sites, and across all vegetation categories, belowground C considerably outweighed aboveground biomass stocks, with belowground C stocks increasing at up to 230 ± 62 Mg C km(-2) yr(-1) (± SE) as mangrove forests developed. Over the past 70 years, we estimate mangrove encroachment may have already enhanced intertidal biomass by up to 283 097 Mg and belowground C stocks by over 500 000 Mg in the state of New South Wales alone. Under changing climatic conditions and rising sea levels, global blue carbon storage may be enhanced as mangrove encroachment becomes more widespread, thereby countering global warming.

Concepts: Marsh, Wetland, Ecosystem, Swamp, Salt marsh, Fen, Biodiversity Action Plan, Mangrove


Two 454 shotgun metagenomes were sequenced from hypersaline soil samples collected in the Odiel salt marsh area in Huelva, southwestern Spain. Analysis of contigs and 16S rRNA-related sequences showed thatHalobacteria,Balneolaeota, andBacteroideteswere the dominant groups.RhodothermaeotaandNanohaloarchaeotawere also abundant.

Concepts: Archaea, Soil, Marsh, Swamp, Sequence, Salt marsh, Fen, Tidal marsh


Climate change and other anthropogenic stressors are converging on coastal ecosystems worldwide. Understanding how these stressors interact to affect ecosystem structure and function has immediate implications for coastal planning, however few studies quantify stressor interactions. We examined past and potential future interactions between two leading stressors on New England salt marshes: sea-level rise and marsh crab (Sesarma reticulatum) grazing driven low marsh die-off. Geospatial analyses reveal that crab-driven die-off has led to an order of magnitude more marsh loss than sea-level rise between 2005 and 2013. However, field transplant experimental results suggest that sea-level rise will facilitate crab expansion into higher elevation marsh platforms by inundating and gradually softening now-tough high marsh peat, exposing large areas to crab-driven die-off. Taking interactive effects of marsh softening and concomitant overgrazing into account, we estimate that even modest levels of sea-level rise will lead to levels of salt marsh habitat loss that are 3x greater than the additive effects of sea-level rise and crab-driven die-off would predict. These findings highlight the importance of multiple stressor studies in enhancing mechanistic understanding of ecosystem vulnerabilities to future stress scenarios and encourage managers to focus on ameliorating local stressors to break detrimental synergisms, reduce future ecosystem loss, and enhance ecosystem resilience to global change.

Concepts: Marsh, Ecosystem, Coast, Swamp, Climate change, Salt marsh, Fen, Tidal marsh


The unique environment of a 4m-thick, free-floating peat island within the Posta Fibreno lake (Central Italy) was analyzed using DNA-based techniques to assess bacterial and fungal community members identity and abundance. Two depths were sampled at 41 and 279 cm from the surface, the former corresponding to an emerged portion of Sphagnum residues accumulated less than 30 yrs ago, and the latter mainly consisting of silty peat belonging to the deeply submerged part of the island, dating back to 1520-1660 AD. The corresponding communities were very diverse, each of them dominated by a different member of the Delta-proteobacteria class for prokaryotes. Among Eukaryotes, Ascomycota prevailed in the shallow layer while Basidiomycota were abundant in the deep sample. The identity of taxa partitioning between acidic surface layer and neutral core is very reminiscent of the differences reported between bogs and fens respectively, supporting the view of Posta Fibreno as a relic transitional floating mire. Moreover, some microbial taxa show an unusual concurrent species convergence between this sub-Mediterranean site and far Nordic or circumpolar environments. This study represents the first report describing the biotic assemblages of such a peculiar environment, and provides some insights into the possible mechanisms of its evolution.

Concepts: Archaea, Bacteria, Organism, Microbiology, Eukaryote, Fungus, Bog, Fen


Ria de Aveiro is a mesotidal coastal lagoon with one of the largest continuous salt marshes in Europe. The objective of this work was to assess C, N and P stocks of Spartina maritima (low marsh pioneer halophyte) and Juncus maritimus (representative of mid-high marsh halophytes) combined with the contribution of Halimione portulacoides, Sarcocornia perennis, and Bolbochenous maritimus to the lagoon ≈4400 ha marsh area. A multivariate analysis (PCO), taking into account environmental variables and the annual biomass and nutrient dynamics, showed that there are no clear seasonal or spatial differences within low or mid-high marshes, but clearly separates J. maritimus and S. maritima marshes. Calculations of C, N and P stocks in the biomass of the five most representative halophytes plus the respective rhizosediment (25 cm depth), and taking into account their relative coverage, represents 252053 Mg C, 38100 Mg N and 7563 Mg P. Over 90% of the stocks are found within mid-high marshes. This work shows the importance of this lagoon’s salt marshes on climate and nutrients regulation, and defines the current condition concerning the ‘blue carbon’ and nutrient stocks, as a basis for prospective future scenarios of salt marsh degradation or loss, namely under SLR context.

Concepts: Soil, Marsh, Swamp, Coastal and oceanic landforms, Salt marsh, Halophytes, Fen, Tidal marsh


The coastal wetland vegetation component of the Deepwater Horizon oil spill Natural Resource Damage Assessment documented significant injury to the plant production and health of Louisiana salt marshes exposed to oiling. Specifically, marsh sites experiencing trace or greater vertical oiling of plant tissues displayed reductions in cover and peak standing crop relative to reference (no oiling), particularly in the marsh edge zone, for the majority of this four year study. Similarly, elevated chlorosis of plant tissue, as estimated by a vegetation health index, was detected for marsh sites with trace or greater vertical oiling in the first two years of the study. Key environmental factors, such as hydrologic regime, elevation, and soil characteristics, were generally similar across plant oiling classes (including reference), indicating that the observed injury to plant production and health was the result of plant oiling and not potential differences in environmental setting. Although fewer significant impacts to plant production and health were detected in the latter years of the study, this is due in part to decreased sample size occurring as a result of erosion (shoreline retreat) and resultant loss of plots, and should not be misconstrued as indicating full recovery of the ecosystem.

Concepts: Petroleum, Soil, Marsh, Wetland, Swamp, Biome, Salt marsh, Fen