Discover the most talked about and latest scientific content & concepts.

Concept: Fabry disease


BACKGROUND: Fabry disease is an X-linked lysosomal storage disorder caused by alpha-galactosidase A deficiency leading to renal, cardiac, cerebrovascular disease and premature death. Treatment with alpha-galactosidase A (enzyme replacement therapy, ERT) stabilises disease in some patients, but long term effectiveness is unclear. METHODS: Renal, cardiac, and cerebral outcomes were prospectively studied in males and females with Fabry disease treated with ERT. Additionally, the occurrence of major cardiac events, stroke, end-stage renal disease and death was compared to a natural history (NH) cohort meeting treatment criteria. RESULTS: Of 75 patients on ERT (median treatment duration 5.2 years, range 0.05-11.0), prospective follow-up was available for 57 adult patients (30 males) and 6 adolescents. Renal function declined in males (-3.4 ml/min/1.73 m2 per year, SE 0.2; p < 0.001) despite ERT, but followed the normal course in females (-0.8 ml/min/1.73 m2 per year, SE 0.3; p = 0.001). Cardiac mass increased during ERT in males (+ 1.2 gram/m2.7, SE 0.3; p < 0.001), but remained stable in females (-0.3 gram/m2.7 per year, SE 0.4; p = 0.52). ERT did not prevent the occurrence of cerebral white matter lesions. Comparison of ERT treated to untreated patients revealed that the odds to develop a first complication increased with age (OR 1.05 (95% CI: 1.0-1.1) per year, p = 0.012). For development of a first or second complication the odds declined with longer treatment duration (OR 0.81 (95% CI: 0.68-0.96) per year of ERT, p = 0.015;OR 0.52 (0.31-0.88), p = 0.014 respectively). CONCLUSIONS: Long term ERT does not prevent disease progression, but the risk of developing a first or second complication declines with increasing treatment duration. ERT in advanced Fabry disease seems of doubtful benefit.

Concepts: Renal failure, Chronic kidney disease, Kidney, Nephrology, Death, Lysosomal storage disease, Enzyme replacement therapy, Fabry disease


Mucopolysaccharidosis type II (MPS II) is an X-linked recessive lysosomal disorder caused by deficiency of iduronate 2-sulfatase (IDS), leading to accumulation of glycosaminoglycans (GAGs) in tissues of affected individuals, progressive disease, and shortened lifespan. Currently available enzyme replacement therapy (ERT) requires lifelong infusions and does not provide neurologic benefit. We utilized a zinc finger nuclease (ZFN)-targeting system to mediate genome editing for insertion of the human IDS (hIDS) coding sequence into a “safe harbor” site, intron 1 of the albumin locus in hepatocytes of an MPS II mouse model. Three dose levels of recombinant AAV2/8 vectors encoding a pair of ZFNs and a hIDS cDNA donor were administered systemically in MPS II mice. Supraphysiological, vector dose-dependent levels of IDS enzyme were observed in the circulation and peripheral organs of ZFN+donor-treated mice. GAG contents were markedly reduced in tissues from all ZFN+donor-treated groups. Surprisingly, we also demonstrate that ZFN-mediated genome editing prevented the development of neurocognitive deficit in young MPS II mice (6-9 weeks old) treated at high vector dose levels. We conclude that this ZFN-based platform for expression of therapeutic proteins from the albumin locus is a promising approach for treatment of MPS II and other lysosomal diseases.

Concepts: DNA, Gene, Genetics, Lysosomal storage disease, Therapy, Fabry disease, Mucopolysaccharidosis, Hunter syndrome


Fabry disease is an X-linked lysosomal storage disorder caused by GLA mutations, resulting in α-galactosidase (α-Gal) deficiency and accumulation of lysosomal substrates. Migalastat, an oral pharmacological chaperone being developed as an alternative to intravenous enzyme replacement therapy (ERT), stabilises specific mutant (amenable) forms of α-Gal to facilitate normal lysosomal trafficking.

Concepts: Medicine, Enzyme, Lysosomal storage disease, Therapy, Enzyme replacement therapy, Fabry disease


Fabry disease (FD) is an X-linked lysosomal storage disorder caused by the deficiency of the enzyme α-galactosidase. It exhibits a wide clinical spectrum that may lead to a delayed or even missed diagnosis and the real incidence can be underestimated. We report the cases of two unrelated Italian families in whom Fabry disease was incidentally diagnosed in two females. In both families, the risk for other lysosomal disorders was known about other members affected respectively by fucosidosis or Mucopolysaccharidosis I (MPSI) Hurler/Scheie. Some subjects were simultaneously heterozygous for Fabry and the other lysosomal deficiency. Our study demonstrates that the risk for more than one lysosomal storage disorder can occur in a family pedigree. The diagnosis of Fabry in female probands represents a diagnostic challenge, as symptoms and signs can be variably present due to the random X-chromosome inactivation.

Concepts: Lysosomal storage disease, Fabry disease, Mucopolysaccharidosis, Lysosomal storage diseases, Hunter syndrome, Sanfilippo syndrome, Mucolipidosis, X-inactivation


The lysosomal storage diseases (LSDs) are a group of inherited metabolic disorders caused by the deficiency of any of the lysosomal functions, in most cases of lysosomal hydrolases. LSDs are typically characterized by storage of a variety of substrates in multiple tissues and organs and by the variable association of unusual clinical manifestations that are often responsible for physical and neurological handicaps. During the past two decades, research in the field of LSDs has made marked progress, particularly with the development of a variety of innovative therapeutic approaches. These include several strategies aimed at increasing the residual activity of the missing enzyme, such as hematopoietic stem cell transplantation, enzyme replacement therapy, pharmacological chaperone therapy and gene therapy. An alternative approach is based on reducing the synthesis of the stored substrate. More recently, the improved knowledge on LSD pathophysiology has indicated additional targets of therapy. The recent progress made in the treatment of LSDs represents a good model that may be extended to other genetic disorders.

Concepts: Protein, Medicine, Cell, Enzyme, Lysosomal storage disease, Therapy, Hematopoietic stem cell, Fabry disease


Mucopolysaccharidosis type II (MPS II) is a lysosomal storage disorder that is progressive and involves multiple organs and tissues. While enzyme replacement therapy (ERT) with idursulfase has been shown to improve many somatic features of the disease, some such as dysostosis multiplex and cardiac valve disease appear irreversible once established, and little is known about the preventative effects of ERT in pre-symptomatic patients. We report on two siblings with severe MPS II caused by an inversion mutation with recombination breakpoints located within the IDS gene and its adjacent pseudogene, IDS-2. The siblings initiated treatment with idursulfase at 3.0years (older brother) and 4months (younger brother) of age, and we compared their outcomes following 2years of treatment. At the start of treatment, the older brother showed typical features of MPS II, including intellectual disability. After 34months of ERT, his somatic disease was stable or improved, but he continued to decline cognitively. By comparison, after 32months of ERT his younger brother remained free from most of the somatic features that had already appeared in his brother at the same age, manifesting only exudative otitis media. Skeletal X-rays revealed characteristic signs of dysostosis multiplex in the older brother at the initiation of treatment that were unchanged two years later, whereas the younger brother showed only slight findings of dysostosis multiplex throughout the treatment period. The younger brother’s developmental quotient trended downward over time to just below the normal range. These findings suggest that pre-symptomatic initiation of ERT may prevent or attenuate progression of the somatic features of MPS II. Follow-up in a larger number of patients is required to confirm the additive long-term benefits of ERT in pre-symptomatic patients.

Concepts: DNA, Lysosomal storage disease, Therapy, Initiation, Fabry disease, TheStart, Mucopolysaccharidosis, Hunter syndrome


Fabry disease is an X-linked lysosomal storage disorder caused by the impairment of α-galactosidase A. Enzyme replacement therapy is available to treat patients, who often experience delayed diagnosis. A newborn screening for Fabry disease was performed to study the prevalence of the pathology and to evaluate the possibility to implement the test in systematic screenings. We collected 14,600 dried blood spot samples (7575 males and 7025 females) and carried out a diagnostic study by fluorometric measurement of α-galactosidase A enzymatic activity and GLA gene sequencing. We detected one patient with a mutation in GLA associated with classical Fabry Disease (M290I), ten subjects carrying genetic variants of uncertain diagnosis (S126G, R118C, A143T), and a girl with the non-characterized variant F18Y, which was not previously described. Additional 25 samples presented nucleotide substitutions described as polymorphisms (D313Y, rs2071225, and rs2071397). The estimated prevalence for Fabry disease in north-western Spanish males is of 0.013%.

Concepts: DNA, Genetics, Cell, Cancer, Lysosomal storage disease, Therapy, Enzyme replacement therapy, Fabry disease


Fabry disease results from deficient α-galactosidase A activity and globotriaosylceramide accumulation causing renal insufficiency, strokes, hypertrophic cardiomyopathy and early demise. We assessed the 10-year outcome of recombinant α-galactosidase A therapy.

Concepts: Renal failure, Kidney, Cardiomyopathy, Therapy, Hypertrophic cardiomyopathy, Enzyme replacement therapy, Fabry disease


BACKGROUND: The cost-effectiveness of enzyme replacement therapy (ERT) compared to standard medical care was evaluated in the Dutch cohort of patients with Fabry disease. METHODS: Cost-effectiveness analysis was performed using a life-time state-transition model. Transition probabilities, effectiveness data and costs were derived from retrospective data and prospective follow-up of the Dutch study cohort consisting of males and females aged 5–78 years. Intervention with ERT (either agalsidase alfa or agalsidase beta) was compared to the standard medical care. The main outcome measures were years without end organ damage (renal, cardiac en cerebrovascular complications), quality adjusted life years (QALYs), and costs. RESULTS: Over a 70 year lifetime, an untreated Fabry patient will generate 55.0 years free of end-organ damage (53.5 years in males, 56.9 years in females) and 48.6 QALYs (47.8 in males, 49.7 in females). Starting ERT in a symptomatic patient increases the number of years free of end-organ damage by 1.5 year (1.6 in males, 1.3 in females), while the number of QALYs gained increases by a similar amount (1.7 in males, 1.4 in females). The costs of ERT starting in the symptomatic stage are between [euro sign]9 - [euro sign]10 million ([lira sign] 7.9 - [lira sign] 8.8 million, $13.0- $14.5 million) during a patient’s lifetime. Consequently, the extra costs per additional year free of end-organ damage and the extra costs per additional QALY range from [euro sign]5.5 - [euro sign]7.5 million ([lira sign] 4.8 – [lira sign] 6.6 million, $ 8.0 – $ 10.8 million), undiscounted. CONCLUSIONS: In symptomatic patients with Fabry disease, ERT has limited effect on quality of life and progression to end organ damage. The pharmaco-economic evaluation shows that this modest effectiveness drives the costs per QALY and the costs per year free of end-organ damage to millions of euros. Differentiation of patients who may benefit from ERT should be improved to enhance cost-effectiveness.

Concepts: Health economics, Diseases and disorders, Costs, Therapy, Cost-utility analysis, Enzyme replacement therapy, Fabry disease, End organ damage


Improving therapeutics delivery in enzyme replacement therapy (ERT) for lysosomal storage disorders is a challenge. Herein, we present the synthesis of novel analogues of mannose 6-phosphate (M6P), known as AMFAs and functionalized at the anomeric position for enzyme grafting. AMFAs are non-phosphate serum-resistant derivatives that efficiently bind the cation-independent mannose 6-phosphate receptor (CI-M6PR), which is the main pathway to address enzymes to lysosomes. One of the AMFAs was used to improve the treatment of the lysosomal myopathy Pompe disease, in which acid α-glucosidase (GAA) is defective. AMFA grafting on a M6P-free recombinant GAA led to a higher uptake of the GAA in adult Pompe fibroblasts in culture as compared to Myozyme, the M6P recombinant GAA. Moreover, the treatment of Pompe adult mice with the AMFA-grafted recombinant enzyme led to a remarkable improvement, even at low doses, in muscle functionality and regeneration, whereas Myozyme had limited efficacy.

Concepts: Cell, Improve, Lysosomal storage disease, Therapy, Lysosome, Fabry disease, Lipase, Mannose-6-phosphate