SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Explosive material

168

For reliable detection of explosives, a combination of methods integrated within a single measurement platform may increase detection performance. However, the efficient field testing of such measurement platforms requires the use of inexplosive simulants that are detectable by a wide range of methods. Physical parameters such as simulant density, elemental composition and crystalline structure must closely match those of the target explosive. The highly discriminating bulk detection characteristics of nuclear quadrupole resonance (NQR) especially constrain simulant design. This paper describes the development of an inexplosive RDX simulant suited to a wide range of measurement methods, including NQR. Measurements are presented that confirm an RDX NQR response from the simulant. The potential use of the simulant for field testing a prototype handheld NQR-based RDX detector is analyzed. Only modest changes in prototype operation during field testing would be required to account for the use of simulant rather than real explosive.

Concepts: Nuclear magnetic resonance, Plastic explosive, Explosive material, Nuclear quadrupole resonance, Nuclear weapon

50

Here we report on the effect of combining endurance training with heavy or explosive strength training on endurance performance in endurance-trained runners and cyclists. Running economy is improved by performing combined endurance training with either heavy or explosive strength training. However, heavy strength training is recommended for improving cycling economy. Equivocal findings exist regarding the effects on power output or velocity at the lactate threshold. Concurrent endurance and heavy strength training can increase running speed and power output at VO2max (Vmax and Wmax , respectively) or time to exhaustion at Vmax and Wmax . Combining endurance training with either explosive or heavy strength training can improve running performance, while there is most compelling evidence of an additive effect on cycling performance when heavy strength training is used. It is suggested that the improved endurance performance may relate to delayed activation of less efficient type II fibers, improved neuromuscular efficiency, conversion of fast-twitch type IIX fibers into more fatigue-resistant type IIA fibers, or improved musculo-tendinous stiffness.

Concepts: Better, Improve, Exercise, Economics, Skeletal muscle, Explosive material, Triathlon, Strength

38

Hartmann, H, Wirth, K, Klusemann, M, Dalic, J, Matuschek, C, and Schmidtbleicher, D. Influence of squatting depth on jumping performance. J Strength Cond Res 26(12): 3243-3261, 2012-It is unclear if increases in 1 repetition maximum (1RM) in quarter squats result in higher gains compared with full depth squats in isometric force production and vertical jump performance. The aim of the research projects was to compare the effects of different squat variants on the development of 1RM and their transfer effects to Countermovement jump (CMJ) and squat jump (SJ) height, maximal voluntary contraction (MVC), and maximal rate of force development (MRFD). Twenty-three women and 36 men (mean age: 24.11 ± 2.88 years) were parallelized into 3 groups based on their CMJ height: deep front squats (FSQ, n = 20), deep back squats (BSQ, n = 20), and quarter back squats (BSQ¼, n = 19). In addition, a control group (C, n = 16) existed (mean age: 24.38 ± 0.50 years). Experimental groups trained 2 d·wk for 10 weeks with a strength-power block periodization, which produced significant (p ≤ 0.05) gains of the specific squat 1RM. The FSQ and BSQ attained significant (p ≤ 0.05) elevations in SJ and CMJ without any interaction effects between both groups (p ≥ 0.05). The BSQ¼ and C did not reveal any significant changes of SJ and CMJ. The FSQ and BSQ had significantly higher SJ scores over C (p ≤ 0.05). The BSQ did not feature any significant group difference to BSQ¼ (p = 0.116) in SJ, whereas FSQ showed a trend toward higher SJ heights over BSQ¼ (p = 0.052). The FSQ and BSQ presented significantly (p ≤ 0.05) higher CMJ heights over BSQ¼ and C. Posttest in MVC and MRFD demonstrated no significant changes for BSQ. Significant declines in MRFD for FSQ in the right leg (p ≤ 0.05) without any interaction effects for MVC and MRFD between both FSQ and BSQ were found. Training of BSQ¼ resulted in significantly (p ≤ 0.05) lower MRFD and MVC values in contrast to FSQ and BSQ. Quarter squat training elicited significant (p ≤ 0.05) transfer losses into the isometric maximal and explosive strength behavior. These findings therefore contest the concept of superior angle-specific transfer effects. Deep front and back squats guarantee performance-enhancing transfer effects of dynamic maximal strength to dynamic speed-strength capacity of hip and knee extensors compared with quarter squats.

Concepts: Muscle contraction, Strength training, Explosive material, Isometric exercise, Squatting, Physical strength, Strength, Squats

36

The evaluation of rate of force development during rapid contractions has recently become quite popular for characterising explosive strength of athletes, elderly individuals and patients. The main aims of this narrative review are to describe the neuromuscular determinants of rate of force development and to discuss various methodological considerations inherent to its evaluation for research and clinical purposes. Rate of force development (1) seems to be mainly determined by the capacity to produce maximal voluntary activation in the early phase of an explosive contraction (first 50-75 ms), particularly as a result of increased motor unit discharge rate; (2) can be improved by both explosive-type and heavy-resistance strength training in different subject populations, mainly through an improvement in rapid muscle activation; (3) is quite difficult to evaluate in a valid and reliable way. Therefore, we provide evidence-based practical recommendations for rational quantification of rate of force development in both laboratory and clinical settings.

Concepts: Scientific method, Improve, The Canon of Medicine, Avicenna, Explosive material, Motor neuron, Physical strength, Strength

30

The purpose of this study is to examine the effects of different volume and training surfaces during a short-term plyometric training program on neuromuscular performance. Twenty-nine subjects were randomly assigned to four groups: control group (CG, n=5), moderate volume group (MVG, n=9, 780 jumps), moderate volume hard surface group (MVGHS, n=8, 780 jumps), and high volume group (HVG, n=7, 1560 jumps). A series of tests were performed by the subjects before and after seven weeks of plyometric training. These tests were: measurement of maximum strength (5 maximum repetitions [5RM]), drop jumps (DJ) of varying height ( 20, 40, and 60cm), squat and countermovement jumps (SJ and CMJ, respectively), timed 20m sprint, agility, body weight, and height. The results of the present study suggest that high training volume leads to a significant increase in explosive performance that requires fast stretch shortening cycle (SSC) actions (such as DJ and sprint) in comparison to what is observed after a moderate training volume regimen. Secondly, when plyometric training is performed on a hard training surface (high impact reaction force), a moderate training volume induces optimal stimulus to increase explosive performance requiring fast SSC actions (e.g. DJ), maximal dynamic strength enhancement, and higher training efficiency. Thus, a finding of interest in the study was that after 7 weeks of plyometric training, performance enhancement in maximal strength and in actions requiring fast SSC (such as DJ and sprint) were dependent on the volume of training and the surface on which it was performed. This must be taken into account when using plyometric training on different surfaces.

Concepts: Time, Force, Surface, Differential geometry, Reaction, Explosive material, Plyometrics, Strength

28

Chemically modified CdSe/ZnS quantum dots (QDs) are used as fluorescent probes for the analysis of explosives, and specifically, the detection of trinitrotoluene (TNT) or trinitrotriazine (RDX). The QDs are functionalized with electron-donating ligands that bind nitro-containing explosives, exhibiting electron-acceptor properties, to the QD surface, via supramolecular donor-acceptor interactions leading to the quenching of the luminescence of the QDs.

Concepts: Fluorescence, Chemistry, Quantum dot, Luminescence, Explosive material, Trinitrotoluene, Dynamite, RDX

28

The method of sample recovery for trace detection and identification of explosives plays a critical role in several criminal investigations. After bombing, there can be difficulties in sending big objects to a laboratory for analysis. Traces can also be searched for on large surfaces, on hands of suspects or on surfaces where the explosive was placed during preparatory phases (e.g. places where an IED was assembled, vehicles used for transportation, etc.). In this work, triacetone triperoxide (TATP) was synthesized from commercial precursors following reported methods. Several portions of about 6mg of TATP were then spread on different surfaces (e.g. floors, tables, etc.) or used in handling tests. Three different swabbing systems were used: a commercial swab, pre-wetted with propan-2-ol (isopropanol) and water (7:3), dry paper swabs, and cotton swabs wetted with propan-2-ol. Paper and commercial swabs were also used to sample a metal plate, where a small charge of about 4g of TATP was detonated. Swabs were sealed in small glass jars with screw caps and Parafilm(®) M and sent to the laboratory for analysis. Swabs were extracted and analysed several weeks later by gas chromatography/mass spectrometry. All the three systems gave positive results, but wetted swabs collected higher amounts of TATP. The developed procedure showed its suitability for use in real cases, allowing TATP detection in several simulations, including a situation in which people wash their hands after handling the explosive.

Concepts: Ethanol, Explosive material, Improvised explosive device, Acetone peroxide, Organic peroxide, Cotton swab, Detonator, Jar

28

A single-step solvent extraction and a solid-phase extraction (SPE) clean-up procedure was developed and optimised in order to establish a universal sampling and clean-up protocol for the combined recovery of organic and inorganic explosive residues. Mixtures of three common swabbing solvents (acetone, acetonitrile and methanol) with water, in various ratios, were assessed for the extraction of four target organic explosives [pentaerythritol tetranitrate (PETN), 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and triacetone triperoxide (TATP)] and two inorganic anions (chlorate and nitrate) from alcohol wipes that were used as a swabbing medium. An efficient, single-step extraction of both organic and inorganic compounds from the wipes was achieved using 60% v/v methanol/water. To develop a clean-up procedure, four commercially available SPE cartridges (Oasis HLB, Isolute(®) C18, Bond-Elut(®) ENV and ABS ELUT Nexus) and an in-house packed XAD-7 cartridge were firstly evaluated for their retention capacity toward three organic explosives (PETN, TNT and RDX) in a mixture of methanol and water. A SPE technique was then developed and optimised from the short-listed sorbents with four representative organic explosives (including TATP). The Nexus cartridge was found to provide a suitable sorbent for extract clean-up following swab extraction with 60% v/v methanol/water. By incorporating the optimised clean-up procedure with the application of a polyester-based alcohol wipe as a sampling medium, a universal swabbing protocol for the combined recovery of both organic and inorganic explosive residues was established. The feasibility of the proposed protocol was assessed by collection and quantitation of the residue from a mixture of TNT, PETN and chlorate deposited on a laminate test surface.

Concepts: Oxygen, Ethanol, Solvent, Explosive material, Northwest Airlines Flight 253, Trinitrotoluene, Acetone peroxide, Organic peroxide

27

Genuine explosive materials are traditionally employed in the training and testing of explosive-detecting canines so that they will respond reliably to these substances. However, challenges arising from the acquisition, storage, handling, and transportation of explosives have given rise to the development of “pseudo-explosive” training aids. These products attempt to emulate the odor of real explosives while remaining inert. Therefore, a canine trained on a pseudo-explosive should respond to its real-life analog. Similarly, a canine trained on an actual explosive should respond to the pseudo-explosive as if it was real. This research tested those assumptions with a focus on three explosives: single-base smokeless powder, 2,4,6-trinitrotoluene (TNT), and a RDX-based plastic explosive (Composition C-4). Using gas chromatography-mass spectrometry with solid phase microextraction as a pre-concentration technique, we determined that the volatile compounds given off by pseudo-explosive products consisted of various solvents, known additives from explosive formulations, and common impurities present in authentic explosives. For example, simulated smokeless powders emitted terpenes, 2,4-dinitrotoluene, diphenylamine, and ethyl centralite. Simulated TNT products emitted 2,4- and 2,6-dinitrotoluene. Simulated C-4 products emitted cyclohexanone, 2-ethyl-1-hexanol, and dimethyldinitrobutane. We also conducted tests to determine whether canines trained on pseudo-explosives are capable of alerting to genuine explosives and vice versa. The results show that canines trained on pseudo-explosives performed poorly at detecting all but the pseudo-explosives they are trained on. Similarly, canines trained on actual explosives performed poorly at detecting all but the actual explosives on which they were trained.

Concepts: Nitrogen, Plastic explosive, Explosive material, Trinitrotoluene, Nitroglycerin, Smokeless powder, Centralite, Dynamite

27

The stability of four target organic explosives [pentaerythritol tetranitrate (PETN), 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and triacetone triperoxide (TATP)] and two inorganic anions (chlorate and nitrate) on polyester-based alcohol wipes and in 60% (v/v) methanol/water extracts, stored over 30 days in clear and amber glass vials at three different temperatures, was investigated in order to establish storage recommendations. The retention of all six representative compounds on a glass surface at two different storage temperatures was also included as a preliminary study on the stability of explosive residues on stored exhibits (such as post-blast debris). The results from the stability study suggested that, after sampling, the wipes should be stored in a dark and low temperature environment. Also, after extracting the wipes with 60% (v/v) methanol/water (as in our previously reported recommended protocol), the extracts should be stored in a similar fashion. The results from the retention study on the glass substrate suggested that exhibits should be stored at the lowest temperature possible to minimise the loss of TNT or TATP (or similar target compounds) that might be present as residues.

Concepts: Plastic explosive, Explosive material, Northwest Airlines Flight 253, Trinitrotoluene, Acetone peroxide, Organic peroxide, Pentaerythritol tetranitrate, Semtex