SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Excitotoxicity

171

There is growing evidence that impaired sensory-processing significantly contributes to the cognitive deficits found in schizophrenia. For example, the mismatch negativity (MMN) and P3a event-related potentials (ERPs), neurophysiological indices of sensory and cognitive function, are reduced in schizophrenia patients and may be used as biomarkers of the disease. In agreement with glutamatergic theories of schizophrenia, NMDA antagonists, such as ketamine, elicit many symptoms of schizophrenia when administered to normal subjects, including reductions in the MMN and the P3a. We sought to develop a nonhuman primate (NHP) model of schizophrenia based on NMDA-receptor blockade using subanesthetic administration of ketamine. This provided neurophysiological measures of sensory and cognitive function that were directly comparable to those recorded from humans. We first developed methods that allowed recording of ERPs from humans and rhesus macaques and found homologous MMN and P3a ERPs during an auditory oddball paradigm. We then investigated the effect of ketamine on these ERPs in macaques. As found in humans with schizophrenia, as well as in normal subjects given ketamine, we observed a significant decrease in amplitude of both ERPs. Our findings suggest the potential of a pharmacologically induced model of schizophrenia in NHPs that can pave the way for EEG-guided investigations into cellular mechanisms and therapies. Furthermore, given the established link between these ERPs, the glutamatergic system, and deficits in other neuropsychiatric disorders, our model can be used to investigate a wide range of pathologies.

Concepts: Electroencephalography, Macaque, Primate, NMDA receptor, Rhesus Macaque, Excitotoxicity, Ketamine, Phencyclidine

167

The article entitled “Monosodium glutamate (MSG) intake is associated with the prevalence of metabolic syndrome in a rural Thai population”, concluded that higher amounts of individual’s MSG consumption are associated with the risk of having the metabolic syndrome and being overweight independent of other major determinants. However, this epidemiological study is the only study indicating such a relationship between MSG intake and the prevalence of metabolic syndrome and there is no direct supporting evidence for a causal relationship between MSG intake and prevalence of metabolic syndrome. This study does not indicate that MSG causes metabolic syndrome. Furthermore, there are several questionable points concerning study methods. Further carefully designed studies taking into account all glutamate sources are necessary to demonstrate the relationship between overweight, metabolic syndrome, MSG intake and umami sensitivity.

Concepts: Amino acid, Glutamic acid, Excitotoxicity, Soy sauce, Monosodium glutamate, Umami, Flavour enhancer, Disodium glutamate

167

166

We examined the methodological approach to the assessment of monosodium glutamate intake. The high carbohydrate and low fat consumption characteristic of this study population would be conducive to the development of metabolic syndrome. However, anomalies in the assessment of dietary information limits conclusion to a causal link of monosodium glutamate to metabolic syndrome and overweight because the study lacks data on the main dietary patterns of consumption. Given the current paucity of data from human studies on monosodium glutamate intake and risk, more studies with robust methodology are required to assess causal links to disease.

Concepts: Amino acid, Nutrition, Glutamic acid, Excitotoxicity, Monosodium glutamate, Umami, Flavour enhancer, Disodium glutamate

157

Phase 3 trials supporting dextromethorphan/quinidine (DM/Q) use as a treatment for pseudobulbar affect (PBA) were conducted in patients with amyotrophic lateral sclerosis (ALS) or multiple sclerosis (MS). The PRISM II study provides additional DM/Q experience with PBA secondary to dementia, stroke, or traumatic brain injury (TBI).

Concepts: Stroke, Traumatic brain injury, Multiple sclerosis, Amyotrophic lateral sclerosis, Excitotoxicity, Jean-Martin Charcot, Minocycline, Dysarthria

72

Alzheimer’s disease is the most frequent age-related dementia, and is currently without treatment. To identify possible targets for early therapeutic intervention we focused on glutamate excitotoxicity, a major early pathogenic factor, and the effects of candesartan, an angiotensin receptor blocker of neuroprotective efficacy in cell cultures and rodent models of Alzheimer’s disease. The overall goal of the study was to determine whether gene analysis of drug effects in a primary neuronal culture correlate with alterations in gene expression in Alzheimer’s disease, thus providing further preclinical evidence of beneficial therapeutic effects.

Concepts: Alzheimer's disease, Gene, Gene expression, Cell, Bacteria, Neurology, Angiotensin II receptor antagonist, Excitotoxicity

48

The subthalamic nucleus (STN) is an element of cortico-basal ganglia-thalamo-cortical circuitry critical for action suppression. In Huntington’s disease (HD) action suppression is impaired, resembling the effects of STN lesioning or inactivation. To explore this potential linkage, the STN was studied in BAC transgenic and Q175 knock-in mouse models of HD. At < 2 and 6 months of age autonomous STN activity was impaired due to activation of KATP channels. STN neurons exhibited prolonged NMDA receptor-mediated synaptic currents, caused by a deficit in glutamate uptake, and elevated mitochondrial oxidant stress, which was ameliorated by NMDA receptor antagonism. STN activity was rescued by NMDA receptor antagonism or breakdown of hydrogen peroxide. At 12 months of age approximately 30% of STN neurons were lost, as in HD. Together these data argue that dysfunction within the STN is an early feature of HD that may contribute to its expression and course.

Concepts: Nervous system, Oxygen, Reactive oxygen species, Chemical element, Hydrogen peroxide, NMDA receptor, Excitotoxicity, Huntington's disease

45

Antidepressant use has been associated with an increased risk of falling, but no studies have been conducted on whether antidepressant use is associated with an increased risk of head injuries which often result from falling among older persons. The objective of this study was to investigate the risk of head and brain injuries associated with antidepressant use among community-dwelling persons with Alzheimer’s disease.

Concepts: Epidemiology, Clinical trial, Traumatic brain injury, Management, Dementia, Injuries, Excitotoxicity, Concussion

39

N-methyl-D-aspartate (NMDA) receptors are glutamate- and glycine-gated channels composed of two GluN1 and two GluN2 or/and GluN3 subunits. GluN3A expression is developmentally regulated, and changes in this normal pattern of expression, which occur in several brain disorders, alter synaptic maturation and function by unknown mechanisms. Uniquely within the NMDA receptor family, GluN1/GluN3 receptors produce glycine-gated deeply desensitising currents that are insensitive to glutamate and NMDA; these currents remain poorly characterised and their cellular functions are unknown. Here, we show that extracellular acidification strongly potentiated glycine-gated currents from recombinant GluN1/GluN3A receptors, with half-maximal effect in the physiologic pH range. This was largely due to slower current desensitisation and faster current recovery from desensitisation, and was mediated by residues facing the heterodimer interface of the ligand-binding domain. Consistent with the observed changes in desensitisation kinetics, acidic shifts increased the GluN1/GluN3A equilibrium current and depolarized the membrane in a glycine concentration-dependent manner. These results reveal novel modulatory mechanisms for GluN1/GluN3A receptors that further differentiate them from the canonical glutamatergic GluN1/GluN2 receptors and provide a new and potent pharmacologic tool to assist the detection, identification, and the further study of GluN1/GluN3A currents in native preparations.

Concepts: Amino acid, Hormone, Cell signaling, Proteinogenic amino acid, PH, NMDA receptor, Glutamic acid, Excitotoxicity

37

Acute secondary neuronal cell death, as seen in neurodegenerative disease, cerebral ischemia (stroke) and traumatic brain injury (TBI), drives spreading neurotoxicity into surrounding, undamaged, brain areas. This spreading toxicity occurs via two mechanisms, synaptic toxicity through hyperactivity, and excitotoxicity following the accumulation of extracellular glutamate. To date, there are no fast-acting therapeutic tools capable of terminating secondary spreading toxicity within a time frame relevant to the emergency treatment of stroke or TBI patients. Here, using hippocampal neurons (DIV 15-20) cultured in microfluidic devices in order to deliver a localized excitotoxic insult, we replicate secondary spreading toxicity and demonstrate that this process is driven by GluN2B receptors. In addition to the modeling of spreading toxicity, this approach has uncovered a previously unknown, fast acting, GluN2A-dependent neuroprotective signaling mechanism. This mechanism utilizes the innate capacity of surrounding neuronal networks to provide protection against both forms of spreading neuronal toxicity, synaptic hyperactivity and direct glutamate excitotoxicity. Importantly, network neuroprotection against spreading toxicity can be effectively stimulated after an excitotoxic insult has been delivered, and may identify a new therapeutic window to limit brain damage.

Concepts: Nervous system, Neuron, Brain, Stroke, Traumatic brain injury, Neurology, NMDA receptor, Excitotoxicity