SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Evolutionary psychology

360

Studies of animal behavior consistently demonstrate that the social environment impacts cooperation, yet the effect of social dynamics has been largely excluded from studies of human cooperation. Here, we introduce a novel approach inspired by nonhuman primate research to address how social hierarchies impact human cooperation. Participants competed to earn hierarchy positions and then could cooperate with another individual in the hierarchy by investing in a common effort. Cooperation was achieved if the combined investments exceeded a threshold, and the higher ranked individual distributed the spoils unless control was contested by the partner. Compared to a condition lacking hierarchy, cooperation declined in the presence of a hierarchy due to a decrease in investment by lower ranked individuals. Furthermore, hierarchy was detrimental to cooperation regardless of whether it was earned or arbitrary. These findings mirror results from nonhuman primates and demonstrate that hierarchies are detrimental to cooperation. However, these results deviate from nonhuman primate findings by demonstrating that human behavior is responsive to changing hierarchical structures and suggests partnership dynamics that may improve cooperation. This work introduces a controlled way to investigate the social influences on human behavior, and demonstrates the evolutionary continuity of human behavior with other primate species.

Concepts: Demonstration, Bishop, Evolutionary psychology, Social stratification, Structure, Primate, Human, Hierarchy

277

Human menopause is an unsolved evolutionary puzzle, and relationships among the factors that produced it remain understood poorly. Classic theory, involving a one-sex (female) model of human demography, suggests that genes imparting deleterious effects on post-reproductive survival will accumulate. Thus, a ‘death barrier’ should emerge beyond the maximum age for female reproduction. Under this scenario, few women would experience menopause (decreased fertility with continued survival) because few would survive much longer than they reproduced. However, no death barrier is observed in human populations. Subsequent theoretical research has shown that two-sex models, including male fertility at older ages, avoid the death barrier. Here we use a stochastic, two-sex computational model implemented by computer simulation to show how male mating preference for younger females could lead to the accumulation of mutations deleterious to female fertility and thus produce a menopausal period. Our model requires neither the initial assumption of a decline in older female fertility nor the effects of inclusive fitness through which older, non-reproducing women assist in the reproductive efforts of younger women. Our model helps to explain why such effects, observed in many societies, may be insufficient factors in elucidating the origin of menopause.

Concepts: Sex, Fertility, Human, Evolutionary psychology, Male, Reproduction, Demography, Female

244

Despite its short-term costs, behaviour that appears altruistic can increase an individual’s inclusive fitness by earning direct (selfish) and/or indirect (kin-selected) benefits. An evolved preference for other-regarding or helping behaviour in potential mates has been proposed as an additional mechanism by which these behaviours can yield direct fitness benefits in humans.

Concepts: Motivation, Evolutionary psychology, Evolutionary biology, Richard Dawkins, Inclusive fitness, The Selfish Gene, Altruism, Kin selection

235

In-group favoritism is a central aspect of human behavior. People often help members of their own group more than members of other groups. Here we propose a mathematical framework for the evolution of in-group favoritism from a continuum of strategies. Unlike previous models, we do not pre-suppose that players never cooperate with out-group members. Instead, we determine the conditions under which preferential in-group cooperation emerges, and also explore situations where preferential out-group helping could evolve. Our approach is not based on explicit intergroup conflict, but instead uses evolutionary set theory. People can move between sets. Successful sets attract members, and successful strategies gain imitators. Individuals can employ different strategies when interacting with in-group versus out-group members. Our framework also allows us to implement different games for these two types of interactions. We prove general results and derive specific conditions for the evolution of cooperation based on in-group favoritism.

Concepts: Behavior, Human behavior, Mathematics, Evolution, Motivation, Emergence, Evolutionary psychology, The Evolution of Cooperation

154

Dual-system theories of human cognition, under which fast automatic processes can complement or compete with slower deliberative processes, have not typically been incorporated into larger scale population models used in evolutionary biology, macroeconomics, or sociology. However, doing so may reveal important phenomena at the population level. Here, we introduce a novel model of the evolution of dual-system agents using a resource-consumption paradigm. By simulating agents with the capacity for both automatic and controlled processing, we illustrate how controlled processing may not always be selected over rigid, but rapid, automatic processing. Furthermore, even when controlled processing is advantageous, frequency-dependent effects may exist whereby the spread of control within the population undermines this advantage. As a result, the level of controlled processing in the population can oscillate persistently, or even go extinct in the long run. Our model illustrates how dual-system psychology can be incorporated into population-level evolutionary models, and how such a framework can be used to examine the dynamics of interaction between automatic and controlled processing that transpire over an evolutionary time scale.

Concepts: Natural selection, Charles Darwin, Evolutionary psychology, Evolutionary biology, Cognition, Psychology, Biology, Evolution

66

Post-copulatory sexual selection (PSS), fuelled by female promiscuity, is credited with the rapid evolution of sperm quality traits across diverse taxa. Yet, our understanding of the adaptive significance of sperm ornaments and the cryptic female preferences driving their evolution is extremely limited. Here we review the evolutionary allometry of exaggerated sexual traits (for example, antlers, horns, tail feathers, mandibles and dewlaps), show that the giant sperm of some Drosophila species are possibly the most extreme ornaments in all of nature and demonstrate how their existence challenges theories explaining the intensity of sexual selection, mating-system evolution and the fundamental nature of sex differences. We also combine quantitative genetic analyses of interacting sex-specific traits in D. melanogaster with comparative analyses of the condition dependence of male and female reproductive potential across species with varying ornament size to reveal complex dynamics that may underlie sperm-length evolution. Our results suggest that producing few gigantic sperm evolved by (1) Fisherian runaway selection mediated by genetic correlations between sperm length, the female preference for long sperm and female mating frequency, and (2) longer sperm increasing the indirect benefits to females. Our results also suggest that the developmental integration of sperm quality and quantity renders post-copulatory sexual selection on ejaculates unlikely to treat male-male competition and female choice as discrete processes.

Concepts: Male, Evolution, Evolutionary psychology, Sexual dimorphism, Charles Darwin, Ronald Fisher, Sex, Sexual selection

59

An important barrier to enduring behavioural change is the human tendency to discount the future. Drawing on evolutionary theories of life history and biophilia, this study investigates whether exposure to natural versus urban landscapes affects people’s temporal discount rates. The results of three studies, two laboratory experiments and a field study reveal that individual discount rates are systematically lower after people have been exposed to scenes of natural environments as opposed to urban environments. Further, this effect is owing to people placing more value on the future after nature exposure. The finding that nature exposure reduces future discounting-as opposed to exposure to urban environments-conveys important implications for a range of personal and collective outcomes including healthy lifestyles, sustainable resource use and population growth.

Concepts: Human, World population, Biodiversity, Evolutionary psychology, Experiment, Life, Science, Natural environment

46

The trillions of microbes living in the gut-the gut microbiota-play an important role in human biology and disease. While much has been done to explore its diversity, a full understanding of our microbiomes demands an evolutionary perspective. In this review, we compare microbiomes from human populations, placing them in the context of microbes from humanity’s near and distant animal relatives. We discuss potential mechanisms to generate host-specific microbiome configurations and the consequences of disrupting those configurations. Finally, we propose that this broader phylogenetic perspective is useful for understanding the mechanisms underlying human-microbiome interactions.

Concepts: Evolutionary psychology, Bacteria, Archaea, Natural selection, Organism, Species, Evolution, Biology

43

In The Descent of Man, Darwin speculated that our capacity for musical rhythm reflects basic aspects of brain function broadly shared among animals. Although this remains an appealing idea, it is being challenged by modern cross-species research. This research hints that our capacity to synchronize to a beat, i.e., to move in time with a perceived pulse in a manner that is predictive and flexible across a broad range of tempi, may be shared by only a few other species. Is this really the case? If so, it would have important implications for our understanding of the evolution of human musicality.

Concepts: On the Origin of Species, Jean-Baptiste Lamarck, Biology, Evolutionary psychology, Species, Rhythm, Evolution, Charles Darwin

41

Since Darwin’s seminal works, the universality of facial expressions of emotion has remained one of the longest standing debates in the biological and social sciences. Briefly stated, the universality hypothesis claims that all humans communicate six basic internal emotional states (happy, surprise, fear, disgust, anger, and sad) using the same facial movements by virtue of their biological and evolutionary origins [Susskind JM, et al. (2008) Nat Neurosci 11:843-850]. Here, we refute this assumed universality. Using a unique computer graphics platform that combines generative grammars [Chomsky N (1965) MIT Press, Cambridge, MA] with visual perception, we accessed the mind’s eye of 30 Western and Eastern culture individuals and reconstructed their mental representations of the six basic facial expressions of emotion. Cross-cultural comparisons of the mental representations challenge universality on two separate counts. First, whereas Westerners represent each of the six basic emotions with a distinct set of facial movements common to the group, Easterners do not. Second, Easterners represent emotional intensity with distinctive dynamic eye activity. By refuting the long-standing universality hypothesis, our data highlight the powerful influence of culture on shaping basic behaviors once considered biologically hardwired. Consequently, our data open a unique nature-nurture debate across broad fields from evolutionary psychology and social neuroscience to social networking via digital avatars.

Concepts: Charles Darwin, Social neuroscience, Mind, Evolutionary psychology, Paul Ekman, Emotion, Neuroscience, Psychology