Discover the most talked about and latest scientific content & concepts.

Concept: European Beaver


Beavers are the archetypal keystone species, which can profoundly alter ecosystem structure and function through their ecosystem engineering activity, most notably the building of dams. This can have a major impact upon water resource management, flow regimes and water quality. Previous research has predominantly focused on the activities of North American beaver (Castor canadensis) located in very different environments, to the intensive lowland agricultural landscapes of the United Kingdom and elsewhere in Europe. Two Eurasian beavers (Castor fiber) were introduced to a wooded site, situated on a first order tributary, draining from intensively managed grassland. The site was monitored to understand impacts upon water storage, flow regimes and water quality. Results indicated that beaver activity, primarily via the creation of 13 dams, has increased water storage within the site (holding ca. 1000m(3) in beaver ponds) and beavers were likely to have had a significant flow attenuation impact, as determined from peak discharges (mean 30±19% reduction), total discharges (mean 34±9% reduction) and peak rainfall to peak discharge lag times (mean 29±21% increase) during storm events. Event monitoring of water entering and leaving the site showed lower concentrations of suspended sediment, nitrogen and phosphate leaving the site (e.g. for suspended sediment; average entering site: 112±72mgl(-1), average leaving site: 39±37mgl(-1)). Combined with attenuated flows, this resulted in lower diffuse pollutant loads in water downstream. Conversely, dissolved organic carbon concentrations and loads downstream were higher. These observed changes are argued to be directly attributable to beaver activity at the site which has created a diverse wetland environment, reducing downstream hydrological connectivity. Results have important implications for beaver reintroduction programs which may provide nature based solutions to the catchment-scale water resource management issues that are faced in agricultural landscapes.

Concepts: Hydrology, Beaver, European Beaver, Beavers, Castoreum, Fur trade, North American Beaver, Keystone species


Globally, greenhouse gas budgets are dominated by natural sources, and aquatic ecosystems are a prominent source of methane (CH4) to the atmosphere. Beaver (Castor canadensis and Castor fiber) populations have experienced human-driven change, and CH4 emissions associated with their habitat remain uncertain. This study reports the effect of near extinction and recovery of beavers globally on aquatic CH4 emissions and habitat. Resurgence of native beaver populations and their introduction in other regions accounts for emission of 0.18-0.80 Tg CH4 year(-1) (year 2000). This flux is approximately 200 times larger than emissions from the same systems (ponds and flowing waters that became ponds) circa 1900. Beaver population recovery was estimated to have led to the creation of 9500-42 000 km(2) of ponded water, and increased riparian interface length of >200 000 km. Continued range expansion and population growth in South America and Europe could further increase CH4 emissions.

Concepts: Carbon dioxide, Natural gas, Beaver, Methane, Americas, Greenhouse gas, European Beaver, Beavers


Establishing true phylogenetic relationships between populations is a critical consideration when sourcing individuals for translocation. This presents huge difficulties with threatened and endangered species that have become extirpated from large areas of their former range. We utilise ancient DNA (aDNA) to reconstruct the phylogenetic relationships of a keystone species which has become extinct in Britain, the Eurasian beaver Castor fiber. We sequenced seventeen 492 bp partial tRNAPro and control region sequences from Late Pleistocene and Holocene age beavers and included these in network, demographic and genealogy analyses. The mode of postglacial population expansion from refugia was investigated by employing tests of neutrality and a pairwise mismatch distribution analysis. We found evidence of a pre-Late Glacial Maximum ancestor for the Western C. fiber clade which experienced a rapid demographic expansion during the terminal Pleistocene to early Holocene period. Ancient British beavers were found to originate from the Western phylogroup but showed no phylogenetic affinity to any one modern relict population over another. Instead, we find that they formed part of a large, continuous, pan-Western European clade that harbored little internal substructure. Our study highlights the utility of aDNA in reconstructing population histories of extirpated species which has real-world implications for conservation planning.

Concepts: Biology, Species, Phylogenetic tree, Beaver, Holocene, European Beaver, Beavers, Keystone species


Elevated concentrations of methylmercury (MeHg) in freshwater ecosystems are of major environmental concern in large parts of the northern hemisphere. Beaver ponds have been identified as a potentially important source of MeHg. The role of beavers might be especially pronounced in large parts of Europe, where beaver populations have expanded rapidly following near-extirpation. This study evaluates the role of the age and colonization history (encompassing patterns of use and reuse) of ponds constructed by the Eurasian beaver Castor fiber in regulating MeHg concentrations in Swedish streams. In 12 beaver systems located in three regions, we quantified MeHg concentrations together with other relevant parameters on five occasions per year in 2012-2013. Five were “pioneer” systems, inundated for the first time since beaver extirpation, and seven “were recolonized”, with dams reconstructed by newly recolonizing beavers. MeHg concentrations in pioneer but not in recolonized beaver systems were up to 3.5 fold higher downstream than upstream of the ponds, and varied between seasons and years. Our results show that pioneer inundation by beavers can increase MeHg concentrations in streams, but that this effect is negligible when dams are reconstructed on previously used ponds. We therefore expect that the recovery and expansion of beavers in the boreal system will only have a transitional effect on MeHg in the environment.

Concepts: Water, Rodent, Beaver, Poland, European Beaver, Beavers, Castoreum, Castoridae


The comeback of the Eurasian beaver (Castor fiber) throughout western and central Europe is considered a major conservation success. Traditionally, several subspecies are recognised by morphology and mitochondrial haplotype, each linked to a relict population. During various reintroduction programs in the 20th century, beavers from multiple source localities were released and now form viable populations. These programs differed in their reintroduction strategies, i.e., using pure subspecies vs. mixed source populations. This inhomogeneity in management actions generated ongoing debates regarding the origin of present beaver populations and appropriate management plans for the future. By sequencing of the mitochondrial control region and microsatellite genotyping of 235 beaver individuals from five selected regions in Germany, Switzerland, Luxembourg, and Belgium we show that beavers from at least four source origins currently form admixed, genetically diverse populations that spread across the study region. While regional occurrences of invasive North American beavers (n = 20) were found, all but one C. fiber bore the mitochondrial haplotype of the autochthonous western Evolutionary Significant Unit (ESU). Considering this, as well as the viability of admixed populations and the fact that the fusion of different lineages is already progressing in all studied regions, we argue that admixture between different beaver source populations should be generally accepted.

Concepts: Genetics, Germany, Population genetics, Beaver, Poland, European Beaver, Beavers, Castoreum


Leptospirosis was first diagnosed in free-ranging Eurasian beavers (Castor fiber L.) in Switzerland in 2010. Pathologic, serologic, molecular and epidemiologic analyses were carried out on 13 animals submitted for necropsy from 2010 through 2014. Typical lesions included alveolar haemorrhages in the lungs, tubular degeneration and interstitial nephritis in the kidneys. Microscopic agglutination test results were positive for serogroups Icterohaemorrhagiae, Australis, Autumnalis and Sejroe. Molecular analysis identified four distinct profiles belonging to serovar Icterohaemorrhagiae or Copenhageni. The severity and features of the lesions were consistent with a fatal disease associated with leptospires similarly to what has been reported in other animals and humans. The spatiotemporal occurrence of leptospirosis in beavers suggested an upstream spread of the bacteria and coincided with an increased incidence of leptospirosis in dogs and a case cluster in humans. However, an epidemiologic link among beaver cases and among species was not supported neither by the serologic nor molecular data.

Concepts: Epidemiology, Rodent, Beaver, Interstitial nephritis, Serology, Poland, European Beaver, Beavers


Aspartic proteinases (AP) form a multigenic group widely distributed in various organisms and includes pepsins (pep), cathepsins D and E, pregnancy associated glycoproteins (PAGs) as well as plant, fungal, and retroviral proteinases. This study describes the transcript identification and expression localization of the AP within the discoid placenta of the Castor fiber. We identified 1257 bp of the AP cDNA sequence, encoding 391 amino acids (aa) of the polypeptide precursor composed of 16 aa signal peptide, 46 aa pro-piece, and 329 aa of the mature protein. Within the AP precursor, one site of potential N-glycosylation (NPS119–121) and two Asp residues (D) specific for the catalytic cleft of AP were identified (VLFDTGSSNLWV91–102 and GIVDTGTSLLTV277–288). The highest homology of the identified placental AP nucleotide and aa sequence was to mouse pepsinogen C (75.8% and 70.1%, respectively). Identified AP also shared high homology with other superfamily members: PAGs, cathepsins, and napsins. The AP identified in this study was named as pepsinogen/PAG-Like (pep/PAG-L). Diversified pep/PAG-L protein profiles with a dominant 58 kDa isoform were identified. Immune reactive signals of the pep/PAG-L were localized within the trophectodermal cells of the beaver placenta. This is the first report describing the placental AP (pep/PAG-L) in the C. fiber.

Concepts: DNA, Protein, Gene, Gene expression, Amino acid, Peptide, Beaver, European Beaver


Using 15 years of data from a stable population of wild Eurasian beavers (Castor fiber), we examine how annual and lifetime access to food resources affect individual age-related changes in reproduction and somatic condition. We found an age-related decline in annual maternal reproductive output, after a peak at age 5-6. Rainfall, an established negative proxy of annual resource availability for beavers, was consistently associated with lower reproductive output for females of all ages. In contrast, breeding territory quality, as a measure of local resource history over reproductive lifetimes, caused differences in individual patterns of reproductive senescence; animals from lower quality territories senesced when younger. Litter size was unrelated to maternal age, although adult body weight increased with age. In terms of resource effects, in poorer years but not in better years, older mothers produced larger offspring than did younger mothers, giving support to the constraint theory. Overall, our findings exemplify state-dependent life-history strategies, supporting an effect of resources on reproductive senescence, where cumulative differences in resource access, and not just reproductive strategy, mediate long-term reproductive trade-offs, consistent with the disposable soma and reproductive restraint theories. We propose that flexible life-history schedules could play a role in the dynamics of populations exhibiting reproductive skew, with earlier breeding opportunities leading to an earlier senescence schedule through resource dependent mechanisms.

Concepts: Human, Male, Reproduction, Female, Organism, Beaver, Breeding season, European Beaver


The European beaver (Castor fiber L.) is an important free-living rodent that inhabits Eurasian temperate forests. Beavers are often referred to as ecosystem engineers because they create or change existing habitats, enhance biodiversity and prepare the environment for diverse plant and animal species. Beavers are protected in most European Union countries, but their genomic background remains unknown. In this study, gene expression patterns in beaver testes and the variations in genetic expression in breeding and non-breeding seasons were determined by high-throughput transcriptome sequencing. Paired-end sequencing in the Illumina HiSeq 2000 sequencer produced a total of 373.06 million of high-quality reads. De novo assembly of contigs yielded 130,741 unigenes with an average length of 1,369.3 nt, N50 value of 1,734, and average GC content of 46.51%. A comprehensive analysis of the testicular transcriptome revealed more than 26,000 highly expressed unigenes which exhibited the highest homology with Rattus norvegicus and Ictidomys tridecemlineatus genomes. More than 8,000 highly expressed genes were found to be involved in fundamental biological processes, cellular components or molecular pathways. The study also revealed 42 genes whose regulation differed between breeding and non-breeding seasons. During the non-breeding period, the expression of 37 genes was up-regulated, and the expression of 5 genes was down-regulated relative to the breeding season. The identified genes encode molecules which are involved in signaling transduction, DNA repair, stress responses, inflammatory processes, metabolism and steroidogenesis. Our results pave the way for further research into season-dependent variations in beaver testes.

Concepts: DNA, Gene, Genetics, Gene expression, Evolution, Molecular biology, Organism, European Beaver


The pregnancy-associated glycoprotein-like family (PAG-L) is a large group of chorionic products, expressed in the pre-placental trophoblast and later in the post-implantational chorionic epithelium, and are involved in proper placenta development and embryo-maternal interaction in eutherians. This study describes identification of the PAG-L family in the genome of the Eurasian beaver (Castor fiber L.), named CfPAG-L. We identified 7657 bp of the CfPAG-L gDNA sequence (Acc. No. KX377932), encompassing nine exons (1-9) and eight introns (A-H). The length of the CfPAG-L exons (59-200 bp) was equivalently similar to the only known counterparts of bPAG1, bPAG2, and pPAG2. The length of the CfPAG-L introns ranged 288-1937 bp and was completely different from previously known PAG introns. The exonic CfPAG-L regions revealed 50.3-72.9% homology with equivalent segments of bPAG1 and pPAG2 structure. The intronic CfPAG-L regions alignments revealed a lack of homology. Within the entire CfPAG-L gene, 31 potential single nucleotide variants (SNV: 7 transversions and 24 transitions) were predicted. The identified exonic polymorphic loci did not affect the amino acid sequence of the CfPAG-L polypeptide precursor. This is the first report describing the CfPAG-L gene sequence, structural organization, and SNVs in the Eurasian beaver, one of the largest rodents.

Concepts: DNA, Protein, Gene, Gene expression, Amino acid, RNA, Intron, European Beaver