Discover the most talked about and latest scientific content & concepts.

Concept: Euglenozoa


Novel drugs to treat human African trypanosomiasis (HAT) are still urgently needed despite the recent addition of nifurtimox-eflornithine combination therapy (NECT) to WHO Model Lists of Essential Medicines against second stage HAT, where parasites have invaded the central nervous system (CNS). The pharmacology of a potential orally available lead compound, N-methoxy-6-{5-[4-(N-methoxyamidino) phenyl]-furan-2-yl}-nicotinamidine (DB844), was evaluated in a vervet monkey model of second stage HAT, following promising results in mice. DB844 was administered orally to vervet monkeys, beginning 28 days post infection (DPI) with Trypanosoma brucei rhodesiense KETRI 2537. DB844 was absorbed and converted to the active metabolite 6-[5-(4-phenylamidinophenyl)-furanyl-2-yl]-nicotinamide (DB820), exhibiting plasma C(max) values of 430 and 190 nM for DB844 and DB820, respectively, after the 14th dose at 6 mg/kg qd. A 100-fold reduction in blood trypanosome counts was observed within 24 h of the third dose and, at the end of treatment evaluation performed four days post the last drug dose, trypanosomes were not detected in the blood or cerebrospinal fluid of any monkey. However, some animals relapsed during the 300 days of post treatment monitoring, resulting in a cure rate of 3/8 (37.5%) and 3/7 (42.9%) for the 5 mg/kg×10 days and the 6 mg/kg×14 days dose regimens respectively. These DB844 efficacy data were an improvement compared with pentamidine and pafuramidine both of which were previously shown to be non-curative in this model of CNS stage HAT. These data show that synthesis of novel diamidines with improved activity against CNS-stage HAT was possible.

Concepts: Central nervous system, Nervous system, Pharmacology, Trypanosoma brucei, African trypanosomiasis, Trypanosoma, Euglenozoa, Trypanosome


BACKGROUND: Specific land cover types and activities have been correlated with Trypanosoma brucei rhodesiense distributions, indicating the importance of landscape for epidemiological risk. However, methods proposed to identify specific areas with elevated epidemiological risk (i.e. where transmission is more likely to occur) tend to be costly and time consuming. This paper proposes an exploratory spatial analysis using geo-referenced human African trypanosomiasis (HAT) cases and matched controls from Serere hospital, Uganda (December 1998 to November 2002) to identify areas with an elevated epidemiological risk of HAT. METHODS: Buffers 3 km from each case and control were used to represent areas in which village inhabitants would carry out their daily activities. It was hypothesised that the selection of areas where several case village buffers overlapped would enable the identification of locations with increased risk of HAT transmission, as these areas were more likely to be frequented by HAT cases in several surrounding villages. The landscape within these overlap areas should more closely relate to the environment in which transmission occurs as opposed to using the full buffer areas. The analysis was carried out for each of four annual periods, for both cases and controls, using a series of threshold values (number of overlapping buffers), including a threshold of one, which represented the benchmark (e.g. use of the full buffer area as opposed to the overlap areas). RESULTS: A greater proportion of the overlap areas for cases consisted of seasonally flooding grassland and lake fringe swamp, than the control overlap areas, correlating well with the preferred habitat of the predominant tsetse species within the study area (Glossina fuscipes fuscipes). The use of overlap areas also resulted in a greater difference between case and control landscapes, when compared with the benchmark (using the full buffer area). CONCLUSIONS: These results indicate that the overlap analysis has enabled the selection of areas more likely to represent epidemiological risk zones than similar analyses using full buffer areas. The identification of potential epidemiological risk zones using this method requires fewer data than other proposed methods and further development may provide vital information for the targeting of control measures.

Concepts: Trypanosoma brucei, African trypanosomiasis, Trypanosoma, Euglenozoa, Buffer, Tsetse fly, Sleeping sickness, Sterile insect technique


Human African Trypanosomiasis is a vector-borne disease of sub-Saharan Africa that causes significant morbidity and mortality. Current therapies have many drawbacks, and there is an urgent need for new, better medicines. Ideally such new treatments should be fast-acting cidal agents that cure the disease in as few doses as possible. Screening assays used for hit-discovery campaigns often do not distinguish cytocidal from cytostatic compounds and further detailed follow-up experiments are required. Such studies usually do not have the throughput required to test the large numbers of hits produced in a primary high-throughput screen. Here, we present a 384-well assay that is compatible with high-throughput screening and provides an initial indication of the cidal nature of a compound. The assay produces growth curves at ten compound concentrations by assessing trypanosome counts at 4, 24 and 48 hours after compound addition. A reduction in trypanosome counts over time is used as a marker for cidal activity. The lowest concentration at which cell killing is seen is a quantitative measure for the cidal activity of the compound. We show that the assay can identify compounds that have trypanostatic activity rather than cidal activity, and importantly, that results from primary high-throughput assays can overestimate the potency of compounds significantly. This is due to biphasic growth inhibition, which remains hidden at low starting cell densities and is revealed in our static-cidal assay. The assay presented here provides an important tool to follow-up hits from high-throughput screening campaigns and avoid progression of compounds that have poor prospects due to lack of cidal activity or overestimated potency.

Concepts: Pharmacology, Drug discovery, Chemical compound, Trypanosoma brucei, African trypanosomiasis, Euglenozoa, Trypanosome, High-throughput screening


The role of mammalian skin in harbouring and transmitting arthropod-borne protozoan parasites has been overlooked for decades as these pathogens have been regarded primarily as blood-dwelling organisms. Intriguingly, infections with low or undetected blood parasites are common, particularly in the case of Human African Trypanosomiasis caused by Trypanosoma brucei gambiense. We hypothesise, therefore, the skin represents an anatomic reservoir of infection. Here we definitively show that substantial quantities of trypanosomes exist within the skin following experimental infection, which can be transmitted to the tsetse vector, even in the absence of detectable parasitaemia. Importantly, we demonstrate the presence of extravascular parasites in human skin biopsies from undiagnosed individuals. The identification of this novel reservoir requires a re-evaluation of current diagnostic methods and control policies. More broadly, our results indicate that transmission is a key evolutionary force driving parasite extravasation that could further result in tissue invasion-dependent pathology.

Concepts: Immune system, Bacteria, Skin, Trypanosoma brucei, African trypanosomiasis, Trypanosoma, Euglenozoa, Tsetse fly


For comparative evaluation, a real time PCR assay was standardized by using TaqMan primer and probe targeting the internal transcribed spacer 1 (ITS-1) region of rRNA for Trypanosoma evansi and sensitivity was evaluated by using DNA, extracted from diethyleamino ethane cellulose purified trypanosomes and trypanosomes infected whole blood of mice. The minimum detection limit for purified trypanosomal DNA was 0.01ng (∼0.33 genomic DNA of T. evansi) whereas for whole blood the minimum detection limit was 0.1ng (∼6.12 genomic DNA). T. evansi infected mice blood samples were collected at different interval post infection and were analysed by conventional parasitological methods (CPT) viz. wet blood smear, thin blood smear, thick blood smear, quantitative buffy coat and real time PCR and found that TaqMan assay was two fold sensitive than CPT in case of in vivo infectivity in mice and gave positive signal at 36h post infection where as QBC and blood smear examination was able to detect at 60h and 72h post infection respectively. A total 109 (80 cattle and 29 buffaloes) blood samples were collected from in and around Ludhiana district and analysed by CPT and real time PCR. The overall prevalence of T. evansi by CPT in cattle and buffaloes was 2.75 per cent. The prevalence rate was 2.5 per cent in cattle and 3.45 per cent in buffaloes. By real time PCR overall prevalence was 12.84 per cent in cattle and buffaloes, with a prevalence rate of 12.50 per cent in cattle and 13.79 per cent in buffaloes.

Concepts: DNA, Time, Polymerase chain reaction, Blood, Trypanosoma, Euglenozoa, Trypanosoma evansi, Buffy coat


Trypanosoma brucei are extracellular kinetoplastid parasites transmitted by the bloodsucking tsetse fly. They are responsible for the fatal disease human African trypanosomiasis (HAT), also known as Sleeping Sickness. In late stage infection, trypanosomes cross the blood-brain barrier (BBB) and invade the central nervous system (CNS) invariably leading to coma and death if untreated. There is no available vaccine and current late stage HAT chemotherapy consists of either melarsoprol, which is highly toxic causing up to 8% of deaths, or nifurtimox-eflornithine combination therapy (NECT), which is costly and difficult to administer. There is therefore an urgent need to identify new late stage HAT drug candidates. Here we review how current imaging tools, ranging from fluorescent confocal microscopy of live immobilised cells in culture to whole animal imaging, are providing insight into T. brucei biology, parasite / host interplay, trypanosome CNS invasion and disease progression. We also consider how imaging tools can be used for candidate drug screening purposes that could lead to new chemotherapies. This article is protected by copyright. All rights reserved.

Concepts: Immune system, Trypanosoma brucei, African trypanosomiasis, Trypanosoma, Euglenozoa, Trypanosome, Tsetse fly, Trypanosomiasis


SUMMARY The aim of this study was to evaluate the anti-trypanosomal effect of treatment with 3'-deoxyadenosine (cordycepin) combined with deoxycoformycin (pentostatin: inhibitor of the enzyme adenosine deaminase) in vitro by using mice experimentally infected with Trypanosoma evansi. In vitro, a dose-dependent trypanocidal effect of cordycepin was observed against the parasite. In the in vivo trials, the two drugs were used individually and in combination of different doses. The drugs when used individually had no curative effect on infected mice. However, the combination of cordycepin (2 mg kg-1) and pentostatin (2 mg kg-1) was 100% effective in the T. evansi-infected groups. There was an increase in levels of some biochemical parameters, especially on liver enzymes, which were accompanied by histological lesions in the liver and kidneys. Based on these results we conclude that treatment using the combination of 3'-deoxyadenosine with deoxycoformycin has a curative effect on mice infected with T. evansi. However, the therapeutic protocol tested led to liver and kidney damage, manifested by hepatotoxicity and nephrotoxicity.

Concepts: Glucose, Liver, In vivo, In vitro, Adenosine deaminase, Trypanosoma, Euglenozoa, Trypanosoma evansi


In recent years, the emergence of highly pathogenic Trypanosoma evansi strains in the Philippines has resulted in substantial losses in livestock production. In this study, we isolated T. evansi from infected-water buffaloes in the Philippines and analyzed their virulence using mice and cattle. A total of 10 strains of T. evansi were isolated. Evaluation of the virulence of each strain using mice depicted significant differences among the strains in the prepatent period, the level of parasitemia, and the survival time of the infected animals. In mice infected with the highly pathogenic T. evansi, signs of excessive inflammation such as marked splenomegaly and increase more than 6-fold in the number of leukocytes were observed at 8 days post-infection. To study the virulence of the parasite strains in cattle (which are the common T. evansi hosts in Philippines), cattle were infected with the T. evansi isolates that showed high and low virulence in mice. The rate of parasite growth and the length of the prepatent periods were found to be similar to those observed in mice for the respective strains. The cattle infected with the highly pathogenic strain developed anemia and a marked decrease in leukocyte counts. To determine the cause of the pathological changes, we analyzed the expression levels of inflammatory cytokines and observed up-regulation of tumor necrosis factor-α in anemic infected cattle. Our findings suggest that the epidemic of T. evansi in the Philippines is characterized by T. evansi strains with varying virulences from low to very high pathogenicity in cattle.

Concepts: Immune system, Inflammation, White blood cell, Trypanosoma, Euglenozoa, Livestock, Parasitology, Trypanosoma evansi


BackgroundAfrican animal trypanosomiasis (AAT) is considered to be one of the greatest constraints to livestock production and livestock-crop integration in most African countries. South-eastern Uganda has suffered for more than two decades from outbreaks of zoonotic Human African Trypanosomiasis (HAT), adding to the burden faced by communities from AAT. There is insufficient AAT and HAT data available (in the animal reservoir) to guide and prioritize AAT control programs that has been generated using contemporary, sensitive and specific molecular techniques. This study was undertaken to evaluate the burden that AAT presents to the small-scale cattle production systems in south-eastern Uganda.MethodsRandomised cluster sampling was used to select 14% (57/401) of all cattle containing villages across Tororo District. Blood samples were taken from all cattle in the selected villages between September-December 2011; preserved on FTA cards and analysed for different trypanosomes using a suite of molecular techniques. Generalized estimating equation and Rogen-Gladen estimator models were used to calculate apparent and true prevalences of different trypanosomes while intra cluster correlations were estimated using a 1-way mixed effect analysis of variance (ANOVA) in R statistical software version 3.0.2.ResultsThe prevalence of all trypanosome species in cattle was 15.3% (95% CI; 12.2-19.1) while herd level trypanosome species prevalence varied greatly between 0-43%. Trypanosoma vivax (17.4%, 95% CI; 10.6-16.8) and Trypanosoma brucei rhodesiense (0.03%) were respectively, the most, and least prevalent trypanosome species identified.ConclusionsThe prevalence of bovine trypanosomes in this study indicates that AAT remains a significant constraint to livestock health and livestock production. There is need to implement tsetse and trypanosomiasis control efforts across Tororo District by employing effective, cheap and sustainable tsetse and trypanosomiasis control methods that could be integrated in the control of other endemic vector borne diseases like tick-borne diseases.

Concepts: Trypanosoma brucei, African trypanosomiasis, Trypanosoma, Euglenozoa, Trypanosome, Tsetse fly, Sleeping sickness, Trypanosomiasis


The protozoan parasite Trypanosoma brucei causes the fatal illness human African trypanosomiasis (HAT). Standard of care medications currently used to treat HAT have severe limitations, and there is a need to find new chemical entities that are active against infections of T. brucei. Following a “drug repurposing” approach, we tested anti-trypanosomal effects of carbazole-derived compounds called “Curaxins”. In vitro screening of 26 compounds revealed 22 with nanomolar potency against axenically cultured bloodstream trypanosomes. In a murine model of HAT, oral administration of compound 1 cured the disease. These studies established 1 as a lead for development of drugs against HAT. Pharmacological time-course studies revealed the primary effect of 1 to be concurrent inhibition of mitosis coupled with aberrant licensing of S-phase entry. Consequently, polyploid trypanosomes containing 8C equivalent of DNA per nucleus and three or four kinetoplasts were produced. These effects of 1 on the trypanosome are reminiscent of “mitotic slippage” or endoreplication observed in some other eukaryotes.

Concepts: Pharmacology, Chromosome, Mitosis, Trypanosoma brucei, African trypanosomiasis, Trypanosoma, Euglenozoa, Trypanosome