Discover the most talked about and latest scientific content & concepts.

Concept: Estimator


Background Acetaminophen is a common therapy for fever in patients in the intensive care unit (ICU) who have probable infection, but its effects are unknown. Methods We randomly assigned 700 ICU patients with fever (body temperature, ≥38°C) and known or suspected infection to receive either 1 g of intravenous acetaminophen or placebo every 6 hours until ICU discharge, resolution of fever, cessation of antimicrobial therapy, or death. The primary outcome was ICU-free days (days alive and free from the need for intensive care) from randomization to day 28. Results The number of ICU-free days to day 28 did not differ significantly between the acetaminophen group and the placebo group: 23 days (interquartile range, 13 to 25) among patients assigned to acetaminophen and 22 days (interquartile range, 12 to 25) among patients assigned to placebo (Hodges-Lehmann estimate of absolute difference, 0 days; 96.2% confidence interval [CI], 0 to 1; P=0.07). A total of 55 of 345 patients in the acetaminophen group (15.9%) and 57 of 344 patients in the placebo group (16.6%) had died by day 90 (relative risk, 0.96; 95% CI, 0.66 to 1.39; P=0.84). Conclusions Early administration of acetaminophen to treat fever due to probable infection did not affect the number of ICU-free days. (Funded by the Health Research Council of New Zealand and others; HEAT Australian New Zealand Clinical Trials Registry number, ACTRN12612000513819 .).

Concepts: Clinical trial, Statistics, Mathematics, Estimator, Intensive care medicine, Interquartile range, Placebo, Fever


Scoring goals in a soccer match can be interpreted as a stochastic process. In the most simple description of a soccer match one assumes that scoring goals follows from independent rate processes of both teams. This would imply simple Poissonian and Markovian behavior. Deviations from this behavior would imply that the previous course of the match has an impact on the present match behavior. Here a general framework for the identification of deviations from this behavior is presented. For this endeavor it is essential to formulate an a priori estimate of the expected number of goals per team in a specific match. This can be done based on our previous work on the estimation of team strengths. Furthermore, the well-known general increase of the number of the goals in the course of a soccer match has to be removed by appropriate normalization. In general, three different types of deviations from a simple rate process can exist. First, the goal rate may depend on the exact time of the previous goals. Second, it may be influenced by the time passed since the previous goal and, third, it may reflect the present score. We show that the Poissonian scenario is fulfilled quite well for the German Bundesliga. However, a detailed analysis reveals significant deviations for the second and third aspect. Dramatic effects are observed if the away team leads by one or two goals in the final part of the match. This analysis allows one to identify generic features about soccer matches and to learn about the hidden complexities behind scoring goals. Among others the reason for the fact that the number of draws is larger than statistically expected can be identified.

Concepts: Time, Scientific method, Statistics, Mathematics, Estimator, Probability theory, Probability, Estimation


We provide a novel method, DRISEE (duplicate read inferred sequencing error estimation), to assess sequencing quality (alternatively referred to as “noise” or “error”) within and/or between sequencing samples. DRISEE provides positional error estimates that can be used to inform read trimming within a sample. It also provides global (whole sample) error estimates that can be used to identify samples with high or varying levels of sequencing error that may confound downstream analyses, particularly in the case of studies that utilize data from multiple sequencing samples. For shotgun metagenomic data, we believe that DRISEE provides estimates of sequencing error that are more accurate and less constrained by technical limitations than existing methods that rely on reference genomes or the use of scores (e.g. Phred). Here, DRISEE is applied to (non amplicon) data sets from both the 454 and Illumina platforms. The DRISEE error estimate is obtained by analyzing sets of artifactual duplicate reads (ADRs), a known by-product of both sequencing platforms. We present DRISEE as an open-source, platform-independent method to assess sequencing error in shotgun metagenomic data, and utilize it to discover previously uncharacterized error in de novo sequence data from the 454 and Illumina sequencing platforms.

Concepts: Sample, Scientific method, Estimator, Full genome sequencing, Error, Sequence, Java, Estimation


BACKGROUND: Lidar height data collected by the Geosciences Laser Altimeter System (GLAS) from 2002 to 2008 has the potential to form the basis of a globally consistent sample-based inventory of forest biomass. GLAS lidar return data were collected globally in spatially discrete full waveform “shots,” which have been shown to be strongly correlated with aboveground forest biomass. Relationships observed at spatially coincident field plots may be used to model biomass at all GLAS shots, and well-established methods of model-based inference may then be used to estimate biomass and variance for specific spatial domains. However, the spatial pattern of GLAS acquisition is neither random across the surface of the earth nor is it identifiable with any particular systematic design. Undefined sample properties therefore hinder the use of GLAS in global forest sampling. RESULTS: We propose a method of identifying a subset of the GLAS data which can justifiably be treated as a simple random sample in model-based biomass estimation. The relatively uniform spatial distribution and locally arbitrary positioning of the resulting sample is similar to the design used by the US national forest inventory (NFI). We demonstrated model-based estimation using a sample of GLAS data in the US state of California, where our estimate of biomass (211 Mg/hectare) was within the 1.4% standard error of the design-based estimate supplied by the US NFI. The standard error of the GLAS-based estimate was significantly higher than the NFI estimate, although the cost of the GLAS estimate (excluding costs for the satellite itself) was almost nothing, compared to at least US$ 10.5 million for the NFI estimate. CONCLUSIONS: Global application of model-based estimation using GLAS, while demanding significant consolidation of training data, would improve inter-comparability of international biomass estimates by imposing consistent methods and a globally coherent sample frame. The methods presented here constitute a globally extensible approach for generating a simple random sample from the global GLAS dataset, enabling its use in forest inventory activities.

Concepts: Statistics, Variance, Mathematics, Simple random sample, Sample size, Estimation theory, Estimator, Sampling


The problem of determining the optimal geometric configuration of a sensor network that will maximize the range-related information available for multiple target positioning is of key importance in a multitude of application scenarios. In this paper, a set of sensors that measures the distances between the targets and each of the receivers is considered, assuming that the range measurements are corrupted by white Gaussian noise, in order to search for the formation that maximizes the accuracy of the target estimates. Using tools from estimation theory and convex optimization, the problem is converted into that of maximizing, by proper choice of the sensor positions, a convex combination of the logarithms of the determinants of the Fisher Information Matrices corresponding to each of the targets in order to determine the sensor configuration that yields the minimum possible covariance of any unbiased target estimator. Analytical and numerical solutions are well defined and it is shown that the optimal configuration of the sensors depends explicitly on the constraints imposed on the sensor configuration, the target positions, and the probabilistic distributions that define the prior uncertainty in each of the target positions. Simulation examples illustrate the key results derived.

Concepts: Mathematics, Estimation theory, Estimator, Maximum likelihood, Signal processing, Optimization, Sensor, Wireless sensor network


For many patients clinical prescription of walking will be beneficial to health and accelerometers can be used to monitor their walking intensity, frequency and duration over many days. Walking intensity should include establishment of individual specific accelerometer count, walking speed and energy expenditure (VO2) relationships and this can be achieved using a walking protocol on a treadmill or overground. However, differences in gait mechanics during treadmill compared to overground walking may result in inaccurate estimations of free-living walking speed and VO2. The aims of this study were to compare the validity of track- and treadmill-based calibration methods for estimating free-living level walking speed and VO2 and to explain between-method differences in accuracy of estimation.

Concepts: Estimator, Psychometrics, Physical quantities, Estimation, Walking, Pedometer, Accelerometer, G-force


Estimates of global species diversity have varied widely, primarily based on variation in the numbers derived from different inventory methods of arthropods and other small invertebrates. Within vertebrates, current diversity metrics for fishes, amphibians, and reptiles are known to be poor estimators, whereas those for birds and mammals are often assumed to be relatively well established. We show that avian evolutionary diversity is significantly underestimated due to a taxonomic tradition not found in most other taxonomic groups. Using a sample of 200 species taken from a list of 9159 biological species determined primarily by morphological criteria, we applied a diagnostic, evolutionary species concept to a morphological and distributional data set that resulted in an estimate of 18,043 species of birds worldwide, with a 95% confidence interval of 15,845 to 20,470. In a second, independent analysis, we examined intraspecific genetic data from 437 traditional avian species, finding an average of 2.4 evolutionary units per species, which can be considered proxies for phylogenetic species. Comparing recent lists of species to that used in this study (based primarily on morphology) revealed that taxonomic changes in the past 25 years have led to an increase of only 9%, well below what our results predict. Therefore, our molecular and morphological results suggest that the current taxonomy of birds understimates avian species diversity by at least a factor of two. We suggest that a revised taxonomy that better captures avian species diversity will enhance the quantification and analysis of global patterns of diversity and distribution, as well as provide a more appropriate framework for understanding the evolutionary history of birds.

Concepts: Biodiversity, Conservation biology, Evolution, Estimator, Biology, Species, Phylogenetics, Taxonomic rank


Mobile money, a service that allows monetary value to be stored on a mobile phone and sent to other users via text messages, has been adopted by the vast majority of Kenyan households. We estimate that access to the Kenyan mobile money system M-PESA increased per capita consumption levels and lifted 194,000 households, or 2% of Kenyan households, out of poverty. The impacts, which are more pronounced for female-headed households, appear to be driven by changes in financial behavior-in particular, increased financial resilience and saving-and labor market outcomes, such as occupational choice, especially for women, who moved out of agriculture and into business. Mobile money has therefore increased the efficiency of the allocation of consumption over time while allowing a more efficient allocation of labor, resulting in a meaningful reduction of poverty in Kenya.

Concepts: Estimator, Economics, Employment, Mobile phone, Text messaging, Macroeconomics, Labour economics, Jacob Mincer


Subacute sclerosing panencephalitis (SSPE) is a fatal long-term complication of measles infection. We performed an estimation of the total number of SSPE cases in Germany for the period 2003 to 2009 and calculated the risk of SSPE after an acute measles infection. SSPE cases were collected from the Surveillance Unit for Rare Paediatric Diseases in Germany and the Institute of Virology and Immunobiology at the University of Würzburg. The total number of SSPE cases was estimated by capture-recapture analysis. For the period 2003 to 2009, 31 children with SSPE who were treated at German hospitals were identified. The capture-recapture estimate was 39 cases (95% confidence interval: 29.2-48.0). The risk of developing SSPE for children contracting measles infection below 5 years of age was calculated as 1∶1700 to 1∶3300. This risk is in the same order of magnitude as the risk of a fatal acute measles infection.

Concepts: Infectious disease, Statistics, Mathematics, Estimator, Approximation, Estimation, Measles, Subacute sclerosing panencephalitis


Objectives. We studied state-adopted bicycle guidelines to determine whether cycle tracks (physically separated, bicycle-exclusive paths adjacent to sidewalks) were recommended, whether they were built, and their crash rate. Methods. We analyzed and compared US bicycle facility guidelines published between 1972 and 1999. We identified 19 cycle tracks in the United States and collected extensive data on cycle track design, usage, and crash history from local communities. We used bicycle counts and crash data to estimate crash rates. Results. A bicycle facility guideline written in 1972 endorsed cycle tracks but American Association of State Highway and Transportation Officials (AASHTO) guidelines (1974-1999) discouraged or did not include cycle tracks and did not cite research about crash rates on cycle tracks. For the 19 US cycle tracks we examined, the overall crash rate was 2.3 (95% confidence interval = 1.7, 3.0) per 1 million bicycle kilometers. Conclusions. AASHTO bicycle guidelines are not explicitly based on rigorous or up-to-date research. Our results show that the risk of bicycle-vehicle crashes is lower on US cycle tracks than published crashes rates on roadways. This study and previous investigations support building cycle tracks. (Am J Public Health. Published online ahead of print May 16, 2013: e1-e9. doi:10.2105/AJPH.2012.301043).

Concepts: Statistics, Estimator, United States, Million, Rates, U.S. state, Crash, American Association of State Highway and Transportation Officials