Discover the most talked about and latest scientific content & concepts.

Concept: Erythropoiesis


Children with neurofibromatosis type 1 (NF1) are predisposed to juvenile myelomonocytic leukemia (JMML), an aggressive myeloproliferative neoplasm (MPN) that is refractory to conventional chemotherapy. Conditional inactivation of the Nf1 tumor suppressor in hematopoietic cells of mice causes a progressive MPN that accurately models JMML and chronic myelomonocytic leukemia (CMML). We characterized the effects of Nf1 loss on immature hematopoietic populations and investigated treatment with the MEK inhibitor PD0325901 (hereafter called 901). Somatic Nf1 inactivation resulted in a marked expansion of immature and lineage-committed myelo-erythroid progenitors and ineffective erythropoiesis. Treatment with 901 induced a durable drop in leukocyte counts, enhanced erythropoietic function, and markedly reduced spleen sizes in mice with MPN. MEK inhibition also restored a normal pattern of erythroid differentiation and greatly reduced extramedullary hematopoiesis. Remarkably, genetic analysis revealed the persistence of Nf1-deficient hematopoietic cells, indicating that MEK inhibition modulates the proliferation and differentiation of Nf1 mutant cells in vivo rather than eliminating them. These data provide a rationale for performing clinical trials of MEK inhibitors in patients with JMML and CMML.

Concepts: Cancer, Oncology, Red blood cell, Hematology, Leukemia, Spleen, Erythropoiesis, Juvenile myelomonocytic leukemia


Erythroid cell commitment and differentiation proceed through activation of a lineage-restricted transcriptional network orchestrated by a group of well characterized genes. However, the minimal set of factors necessary for instructing red blood cell (RBC) development remains undefined. We employed a screen for transcription factors allowing direct lineage reprograming from fibroblasts to induced erythroid progenitors/precursors (iEPs). We show that Gata1, Tal1, Lmo2, and c-Myc (GTLM) can rapidly convert murine and human fibroblasts directly to iEPs. The transcriptional signature of murine iEPs resembled mainly that of primitive erythroid progenitors in the yolk sac, whereas addition of Klf1 or Myb to the GTLM cocktail resulted in iEPs with a more adult-type globin expression pattern. Our results demonstrate that direct lineage conversion is a suitable platform for defining and studying the core factors inducing the different waves of erythroid development.

Concepts: DNA, Gene, Cell nucleus, Gene expression, Blood, Red blood cell, Transcription factor, Erythropoiesis


Red cell production is primarily determined by the action of erythropoietin. Additional erythropoiesis-regulatory factors include molecules and cellular interactions occurring within the bone marrow (BM) microenvironment. Sotatercept (ACE-011) is an activin receptor ligand trap which binds several members of the TGF-β superfamily. Treatment with ACE-011 reverses bone loss and reduces the degree of osteoporosis. Surprisingly, this was accompanied by elevated hemoglobin and hematocrit levels. The mechanisms underlying the beneficial effects of ACE-011 on red cell production remain unknown. This study explores the means by which ACE-011 promotes erythropoiesis. We showed that ACE-011 does not directly affect erythroid differentiation of human CD34(+) cells in vitro. We next tested whether ACE-011 acts indirectly by affecting BM accessory cells. Conditioned media (CM) produced by BM stromal cells (SC) inhibited erythroid differentiation of CD34(+) cells while maintained their ability to proliferate. However, CM from SC treated with ACE-011 partially restored erythropoiesis coinciding with changes in the molecular and secretory profile of SC, including the expression and secretion of erythropoiesis-modulatory factors. We conclude that inhibitory factors produced by BM-SC in vitro might control erythropoiesis in vivo and that agents that reverse these microenvironmental signals may provide an approach to attenuate anemia in clinical conditions.

Concepts: Hemoglobin, Erythropoietin, Cell nucleus, Red blood cell, Bone marrow, Anemia, Hematocrit, Erythropoiesis


Sprouty proteins are established modifiers of receptor tyrosine kinase (RTK) signaling and play important roles in vasculogenesis, bone morphogenesis, and renal uteric branching. Little is understood, however, concerning possible roles for these molecular adaptors during hematopoiesis. Within erythroid lineage, Spry1 was observed to be selectively and highly expressed at CFU-e to erythroblast stages. In analyses of possible functional roles, an Mx1-Cre approach was applied to conditionally delete Spry1. At steady state, Spry1 deletion selectively perturbed erythroid development and led to reticulocytosis plus heightened splenic erythropoiesis. When challenged by hemolysis, Spry1-null mice exhibited worsened anemia and delayed recovery. During short-term marrow transplantation, Spry1-null donor marrow also failed to efficiently rescue the erythron. In each anemia model, however, hyperexpansion of erythroid progenitors was observed. Spry function depends on phosphorylation of a conserved N-terminal PY motif. Through an LC-MS/MS approach, Spry1 was discovered to be regulated via the erythropoietin receptor (EPOR), with marked EPO-induced Spry1-PY53 phosphorylation observed. When EPOR signaling pathways were analyzed within Spry1-deficient erythroid progenitors, hyperactivation of not only Erk1,2 but also Jak2 was observed. Studies implicate Spry1 as a novel regulator of erythropoiesis during anemia, transducer of EPOR signals, and candidate suppressor of Jak2 activity.

Concepts: Hemoglobin, Erythropoietin, Signal transduction, Red blood cell, Bone marrow, Anemia, Hematology, Erythropoiesis


Little is known about risk factors associated with out-of-hospital outcomes in survivors of critical illness. We hypothesized that the presence of nucleated red blood cells in patients who survived critical care would be associated with adverse outcomes following hospital discharge.

Concepts: Cell nucleus, Epidemiology, Blood, Patient, Red blood cell, Blood type, Bone marrow, Erythropoiesis


Roxadustat (FG-4592) is an oral hypoxia-inducible factor prolyl hydroxylase inhibitor that stimulates erythropoiesis. This Phase 2a study tested efficacy (Hb response) and safety of roxadustat in anemic nondialysis-dependent chronic kidney disease (NDD-CKD) subjects.

Concepts: Chronic kidney disease, Kidney, Erythropoietin, Red blood cell, Randomized controlled trial, Anemia, Erythropoiesis, Malaise


Diamond-Blackfan anemia (DBA) is a congenital disorder characterized by the failure of erythroid progenitor differentiation, severely curtailing red blood cell production. Because many DBA patients fail to respond to corticosteroid therapy, there is considerable need for therapeutics for this disorder. Identifying therapeutics for DBA requires circumventing the paucity of primary patient blood stem and progenitor cells. To this end, we adopted a reprogramming strategy to generate expandable hematopoietic progenitor cells from induced pluripotent stem cells (iPSCs) from DBA patients. Reprogrammed DBA progenitors recapitulate defects in erythroid differentiation, which were rescued by gene complementation. Unbiased chemical screens identified SMER28, a small-molecule inducer of autophagy, which enhanced erythropoiesis in a range of in vitro and in vivo models of DBA. SMER28 acted through autophagy factor ATG5 to stimulate erythropoiesis and up-regulate expression of globin genes. These findings present an unbiased drug screen for hematological disease using iPSCs and identify autophagy as a therapeutic pathway in DBA.

Concepts: Erythropoietin, Cell nucleus, Developmental biology, Red blood cell, Stem cell, Bone marrow, Hematology, Erythropoiesis



In mammals, hypoxia-triggered erythropoietin release increases red blood cell mass to meet tissue oxygen demands. Using male Wistar rats, we unmask a previously unrecognized regulatory pathway of erythropoiesis involving suppressor control by the NO metabolite and ubiquitous dietary component nitrate. We find that circulating hemoglobin levels are modulated by nitrate at concentrations achievable by dietary intervention under normoxic and hypoxic conditions; a moderate dose of nitrate administered via the drinking water (7 mg NaNO3/kg body weight/d) lowered hemoglobin concentration and hematocrit after 6 d compared with nonsupplemented/NaCl-supplemented controls. The underlying mechanism is suppression of hepatic erythropoietin expression associated with the downregulation of tissue hypoxia markers, suggesting increased pO2. At higher nitrate doses, however, a partial reversal of this effect occurred; this was accompanied by increased renal erythropoietin expression and stabilization of hypoxia-inducible factors, likely brought about by the relative anemia. Thus, hepatic and renal hypoxia-sensing pathways act in concert to modulate hemoglobin in response to nitrate, converging at an optimal minimal hemoglobin concentration appropriate to the environmental/physiologic situation. Suppression of hepatic erythropoietin expression by nitrate may thus act to decrease blood viscosity while matching oxygen supply to demand, whereas renal oxygen sensing could act as a brake, averting a potentially detrimental fall in hematocrit.-Ashmore, T., Fernandez, B. O., Evans, C. E., Huang, Y., Branco-Price, C., Griffin, J. L., Johnson, R. S., Feelisch, M., and Murray, A. J. Suppression of erythropoiesis by dietary nitrate.

Concepts: Hemoglobin, Oxygen, Erythropoietin, Blood, Red blood cell, Anemia, Hypoxia, Erythropoiesis


The unique sensitivity of early red cell progenitors to iron deprivation, known as the erythroid iron restriction response, serves as a basis for human anemias globally. This response impairs erythropoietin-driven erythropoiesis and underlies erythropoietic repression in iron deficiency anemia. Mechanistically, the erythroid iron restriction response results from inactivation of aconitase enzymes and can be suppressed by providing the aconitase product isocitrate. Recent studies have implicated the erythroid iron restriction response in anemia of chronic disease and inflammation (ACDI), offering new therapeutic avenues for a major clinical problem; however, inflammatory signals may also directly repress erythropoiesis in ACDI. Here, we show that suppression of the erythroid iron restriction response by isocitrate administration corrected anemia and erythropoietic defects in rats with ACDI. In vitro studies demonstrated that erythroid repression by inflammatory signaling is potently modulated by the erythroid iron restriction response in a kinase-dependent pathway involving induction of the erythroid-inhibitory transcription factor PU.1. These results reveal the integration of iron and inflammatory inputs in a therapeutically tractable erythropoietic regulatory circuit.

Concepts: Hemoglobin, Erythropoietin, Red blood cell, Anemia, Iron deficiency anemia, Transferrin, Human iron metabolism, Erythropoiesis