Discover the most talked about and latest scientific content & concepts.

Concept: Erythromelalgia


Human acute and inflammatory pain requires the expression of voltage-gated sodium channel Nav1.7 but its significance for neuropathic pain is unknown. Here we show that Nav1.7 expression in different sets of mouse sensory and sympathetic neurons underlies distinct types of pain sensation. Ablating Nav1.7 gene (SCN9A) expression in all sensory neurons using Advillin-Cre abolishes mechanical pain, inflammatory pain and reflex withdrawal responses to heat. In contrast, heat-evoked pain is retained when SCN9A is deleted only in Nav1.8-positive nociceptors. Surprisingly, responses to the hotplate test, as well as neuropathic pain, are unaffected when SCN9A is deleted in all sensory neurons. However, deleting SCN9A in both sensory and sympathetic neurons abolishes these pain sensations and recapitulates the pain-free phenotype seen in humans with SCN9A loss-of-function mutations. These observations demonstrate an important role for Nav1.7 in sympathetic neurons in neuropathic pain, and provide possible insights into the mechanisms that underlie gain-of-function Nav1.7-dependent pain conditions.

Concepts: DNA, Gene, Mutation, Evolution, Action potential, Pain, Sodium, Erythromelalgia


Primary erythromelalgia (PE) is an autosomal dominant neurological disorder characterized by severe burning pain and erythema in the extremities upon heat stimuli or exercise. Mutations in human SCN9A gene, encoding the α-subunit of the voltage-gated sodium channel, Na(v)1.7, were found to be responsible for PE. Three missense mutations of SCN9A gene have recently been identified in Taiwanese patients including a familial (I136V) and two sporadic mutations (I848T, V1316A). V1316A is a novel mutation and has not been characterized yet. Topologically, I136V is located in DI/S1 segment and both I848T and V1316A are located in S4-S5 linker region of DII and DIII domains, respectively. To characterize the elelctrophysiological manifestations, the channel conductance with whole-cell patch clamp was recorded on the over-expressed Chinese hamster overy cells. As compared with wild type, the mutant channels showed a significant hyperpolarizing shift in voltage dependent activation and a depolarizing shift in steady-state fast inactivation. The recovery time from channel inactivation is faster in the mutant than in the wild type channels. Since warmth can trigger and exacerbate symptoms, we then examine the influence of tempearture on the sodium channel conduction. At 35°C, I136V and V1316A mutant channels exhibit a further hyperpolarizing shift at activation as compared with wild type channel, even though wild type channel also produced a significant hyperpolarizing shift compared to that of 25°C. High temperature caused a significant depolarizing shift in steady-state fast inactivation in all three mutant channels. These findings may confer to the hyperexcitability of sensory neurons, especially at high temperature. In order to identifying an effective treatment, we tested the IC(50) values of selective sodium channel blockers, lidocaine and mexiletine. The IC(50) for mexiletine is lower for I848T mutant channel as compared to that of the wild type and other two mutants which is comparable to the clinical observations.

Concepts: DNA, Mutation, Mutant, Action potential, Electrophysiology, Point mutation, Missense mutation, Erythromelalgia


Pain places a devastating burden on patients and society and current pain therapeutics exhibit limitations in efficacy, unwanted side effects and the potential for drug abuse and diversion. Although genetic evidence has clearly demonstrated that the voltage-gated sodium channel, Nav1.7, is critical to pain sensation in mammals, pharmacological inhibitors of Nav1.7 have not yet fully recapitulated the dramatic analgesia observed in Nav1.7-null subjects. Using the tarantula venom-peptide ProTX-II as a scaffold, we engineered a library of over 1500 venom-derived peptides and identified JNJ63955918 as a potent, highly selective, closed-state Nav1.7 blocking peptide. Here we show that JNJ63955918 induces a pharmacological insensitivity to pain that closely recapitulates key features of the Nav1.7-null phenotype seen in mice and humans. Our findings demonstrate that a high degree of selectivity, coupled with a closed-state dependent mechanism of action is required for strong efficacy and indicate that peptides such as JNJ63955918 and other suitably optimized Nav1.7 inhibitors may represent viable non-opioid alternatives for the pharmacological treatment of severe pain.

Concepts: Pharmacology, Action potential, Pain, Enzyme inhibitor, Sodium, Agonist, Morphine, Erythromelalgia


Mutations in the SCN9A gene cause chronic pain and pain insensitivity syndromes. We aimed to study clinical, genetic, and electrophysiological features of paroxysmal extreme pain disorder (PEPD) caused by a novel SCN9A mutation.

Concepts: DNA, Genetics, Evolution, Action potential, Electrophysiology, Ion channels, Paroxysmal extreme pain disorder, Erythromelalgia


Controlling pain in burn-injured patients poses a major clinical challenge. Recent findings suggest that reducing the activity of the voltage-gated sodium channel Nav1.7 in primary sensory neurons could provide improved pain control in burn-injured patients. Here, we report that partial thickness scalding-type burn injury on the rat paw upregulates Nav1.7 expression in primary sensory neurons 3 h following injury. The injury also induces upregulation in phosphorylated cyclic adenosine monophosphate response element-binding protein (p-CREB), a marker for nociceptive activation in primary sensory neurons. The upregulation in p-CREB occurs mainly in Nav1.7-immunopositive neurons and exhibits a peak at 5 min and, following a decline at 30 min, a gradual increase from 1 h post-injury. The Nav1.7 blocker protoxin II (ProTxII) or morphine injected intraperitoneally 15 min before or after the injury significantly reduces burn injury-induced spinal upregulation in phosphorylated serine 10 in histone H3 and phosphorylated extracellular signal-regulated kinase ½, which are both markers for spinal nociceptive processing. Further, ProTxII significantly reduces the frequency of spontaneous excitatory post-synaptic currents in spinal dorsal horn neurons following burn injury. Together, these findings indicate that using Nav1.7 blockers should be considered to control pain in burn injury.

Concepts: Signal transduction, Adenosine triphosphate, Action potential, Voltage-gated ion channel, Pain, Sensory system, Sodium, Erythromelalgia


In common with other chronic pain conditions, there is an unmet clinical need in the treatment of inherited erythromelalgia (IEM). TheSCN9Agene encoding the sodium channel Nav1.7 expressed in the peripheral nervous system plays a critical role in IEM. A gain-of-function mutation in this sodium channel leads to aberrant sensory neuronal activity and extreme pain, particularly in response to heat. Five patients with IEM were treated with a new potent and selective compound that blocked the Nav1.7 sodium channel resulting in a decrease in heat-induced pain in most of the patients. We derived induced pluripotent stem cell (iPSC) lines from four of five subjects and produced sensory neurons that emulated the clinical phenotype of hyperexcitability and aberrant responses to heat stimuli. When we compared the severity of the clinical phenotype with the hyperexcitability of the iPSC-derived sensory neurons, we saw a trend toward a correlation for individual mutations. The in vitro IEM phenotype was sensitive to Nav1.7 blockers, including the clinical test agent. Given the importance of peripherally expressed sodium channels in many pain conditions, our approach may have broader utility for a wide range of pain and sensory conditions.

Concepts: Nervous system, Neuron, Mutation, Stem cell, Action potential, Sodium, Induced pluripotent stem cell, Erythromelalgia


There is a need for more effective pharmacotherapy for chronic pain, including pain in inherited erythromelalgia (IEM) in which gain-of-function mutations of sodium channel NaV1.7 make dorsal root ganglion (DRG) neurons hyperexcitable.

Concepts: Nervous system, Neuron, Ganglion, Dorsal root ganglion, Mutation, Pain, Nociception, Erythromelalgia


Inherited erythromelalgia, the first human pain syndrome linked to voltage-gated sodium channels, is widely regarded as a genetic model of human pain. Because inherited erythromelalgia was linked to gain-of-function changes of sodium channel Nav1.7 only a decade ago, the literature has mainly consisted of reports of genetic and/or clinical characterization of individual patients. This paper describes the pattern of pain, natural history, somatosensory profile, psychosocial status and olfactory testing of 13 subjects with primary inherited erythromelalgia with mutations of SCN9A, the gene encoding Nav1.7. Subjects were clinically profiled using questionnaires, quantitative sensory testing and olfaction testing during the in-clinic phase of the study. In addition, a detailed pain phenotype for each subject was obtained over a 3-month period at home using diaries, enabling subjects to self-report pain attacks, potential triggers, duration and severity of pain. All subjects reported pain and heat in the extremities (usually feet and/or hands), with pain attacks triggered by heat or exercise and relieved mainly by non-pharmacological manoeuvres such as cooling. A large proportion of pain attacks (355/1099; 32%) did not involve a specific trigger. There was considerable variability in the number, duration and severity of pain attacks between subjects, even those carrying the same mutation within a family, and within individuals over the 12-13 week observation period. Most subjects (11/13) had pain between attacks. For these subjects, mean pain severity between pain attacks was usually lower than that during an attack. Olfaction testing using the Sniffin’T test did not demonstrate hyperosmia. One subject had evidence of orthostatic hypotension. Overall, there was a statistically significant correlation between total Hospital Anxiety and Depression Scale scores (P = 0.005) and pain between attacks and for Hospital Anxiety and Depression Scale Depression scores and pain between attacks (P = 0.001). Hospital Anxiety and Depression Scale scores for five subjects were below the threshold for mild anxiety or depression and none of the 13 subjects were severely anxious and/or depressed. Quantitative sensory testing revealed significantly increased detection thresholds for cold and warm stimuli at affected, compared to unaffected sites. By contrast, significantly decreased cold and heat pain thresholds were found at unaffected sites. Sensory profiles varied considerably between affected and unaffected sites, suggesting the existence of small fibre neuropathy in symptomatic sites. This in-depth clinical characterization of a well-defined inherited erythromelalgia population indicates the importance of characterizing the pain phenotype in individuals before undertaking clinical trials, given the inherent variability of pain both between and within inherited erythromelalgia subjects, even those within a family who carry the same mutation.

Concepts: Anxiety, Psychology, Action potential, Pain, Sensory system, Olfaction, Sodium channel, Erythromelalgia


Primary erythromelalgia (PE ORPHA90026) is a rare autosomal dominant neuropathy characterized by the combination of recurrent burning pain, warmth and redness of the extremities. The incidence rate of PE ranges from 0.36 to 1.1 per 100,000 persons. Gender ratio differs according to different studies and no evidence showed a gender preference. Clinical onset of PE is often in the first decade of life. Burning pain is the most predominant symptom and is usually caused and precipitated by warmth and physical activities. Reported cases of PE contain both inherited and sporadic forms. Genetic etiology of PE is mutations on SCN9A, the encoding gene of a voltage-gated sodium channel subtype Nav1.7. Diagnosis of PE is made upon clinical manifestations and screening for mutations on SCN9A. Exclusion of several other treatable diseases/secondary erythromelalgia is also necessary because of the lack of biomarkers specifically for PE. Differential diagnoses can include Fabry disease, cellulites, Raynaud phenomenon, vasculitis and so on. Diagnostic methods often involve complete blood count, imaging studies and thermograph. Treatment for PE is unsatisfactory and highly individualized. Frequently used pain relieving drugs involve sodium channel blockers such as lidocaine, carbamazepine and mexiletine. Novel drugs such as PF-05089771 and TV-45070 could be promising in ameliorating pain symptoms due to their Nav1.7 selectivity. Patients' symptoms often worsen over time and many patients develop ulcerations and gangrenes caused by excessive exposure to low temperature in order to relieve pain. This review mainly focuses on PE and the causative gene SCN9A – its mutations and their effects on Nav1.7 channels' electrophysiological properties. We propose a genotype-channelopathy-phenotype correlation network underlying PE etiology which could provide guidance for future therapeutics.

Concepts: Medicine, Medical terms, Action potential, Electrophysiology, Greek loanwords, Sodium channel, Erythromelalgia, Nav1.7


Itch is a common experience. It can occur in the course of systemic diseases and be one manifestation of allergies, or the consequence of diseases affecting the somatosensory pathway. We describe a kindred characterized by paroxysmal itch caused by a variant in SCN9A gene encoding for the Nav1.7 sodium channel. Patients underwent clinical and somatosensory profile assessment by quantitative sensory testing, nerve conduction study, autonomic cardiovascular reflex and sympathetic skin response examination, skin biopsy with quantification of intraepidermal nerve fiber density and SCN9A mutational analysis. The index patient, her mother and a sister presented with a stereotypical clinical picture characterized by paroxysmal itch attacks involving the shoulders, upper back and upper limbs, followed by transient burning pain, triggered by environmental warmth, hot drinks and spicy food. Somatosensory profile assessment demonstrated a remarkably identical pattern of increased cold and pain thresholds and paradoxical heat sensation. Autonomic tests were negative, whereas skin biopsy revealed decreased intraepidermal nerve fiber density in two of the three patients. All affected members harbored the 2215A>G I739V substitution in exon 13 of SCN9A gene. Pregabalin treatment reduced itch intensity and attack frequency in all patients. The co-segregation of the I739V variant in the affected members of the family provides evidence, for the first time, that paroxysmal itch can be related to a mutation in sodium channel gene.

Concepts: DNA, Epidemiology, Cancer, Mutation, Action potential, Nerve, Nerve conduction study, Erythromelalgia