SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Epithelial sodium channel

171

Besides the kidneys, the gastrointestinal tract is the principal organ responsible for sodium homeostasis. For sodium transport across the cell membranes the epithelial sodium channel (ENaC) is of pivotal relevance. The ENaC is mainly regulated by mineralocorticoid receptor mediated actions. The MR activation by endogenous 11β-hydroxy-glucocorticoids is modulated by the 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2). Here we present evidence for intestinal segment specific 11β-HSD2 expression and hypothesize that a high salt intake and/or uninephrectomy (UNX) affects colonic 11β-HSD2, MR and ENaC expression. The 11β-HSD2 activity was measured by means of 3H-corticosterone conversion into 3H-11-dehydrocorticosterone in Sprague Dawley rats on a normal and high salt diet. The activity increased steadily from the ileum to the distal colon by a factor of about 3, an observation in line with the relevance of the distal colon for sodium handling. High salt intake diminished mRNA and protein of 11β-HSD2 by about 50% (p<0.001) and reduced the expression of the MR (p<0.01). The functionally relevant ENaC-β and ENaC-γ expression, a measure of mineralocorticoid action, diminished by more than 50% by high salt intake (p<0.001). The observed changes were present in rats with and without UNX. Thus, colonic epithelial cells appear to contribute to the protective armamentarium of the mammalian body against salt overload, a mechanism not modulated by UNX.

Concepts: Protein, Digestive system, Epithelium, Aldosterone, Stomach, Sodium, Laboratory rat, Epithelial sodium channel

28

AIMS: In diseases with proteinuria, e.g. nephrotic syndrome and preeclampsia, there often is suppression of plasma renin-angiotensin-aldosterone system components, expansion of extracellular volume and avid renal sodium retention. Mechanisms of sodium retention in proteinuria are reviewed. METHODS AND RESULTS: In animal models of nephrotic syndrome, the amiloride-sensitive epithelial sodium channel ENaC is activated while more proximal renal Na(+) transporters are down-regulated. With suppressed plasma aldosterone concentration and little change in ENaC abundance in nephrotic syndrome, the alternative modality of proteolytic activation of ENaC has been explored. Proteolysis leads to putative release of an inhibitory peptide from the extracellular domain of the gamma ENaC subunit. This leads to full activation of the channel. Plasminogen has been demonstrated in urine from patients with nephrotic syndrome and preeclampsia. Urine plasminogen correlates with urine albumin and is activated to plasmin within the urinary space by uPA. This agrees with aberrant filtration across an injured glomerular barrier independent of the primary disease. Pure plasmin and urine samples containing plasmin activate inward current in single murine collecting duct cells. In the present paper, it is shown that human lymphocytes may be used to uncover the effect of urine-plasmin on amiloride- and aprotinin-sensititve inward currents. Data from hypertensive rat models show that protease inhibitors may attenuate blood pressure. CONCLUSION: Aberrant filtration of plasminogen and conversion within the urinary space to plasmin may activate gamma ENaC proteolytically and contribute to inappropriate NaCl retention and edema in acute proteinuric conditions and to hypertension in diseases with chronic microalbuminuria/proteinuria. © 2012 The Authors Acta Physiologica © 2012 Scandinavian Physiological Society.

Concepts: Kidney, Hypertension, Blood pressure, Nephrotic syndrome, Aldosterone, Sodium, Potassium, Epithelial sodium channel

28

Aldosterone modulates the activity of the epithelial sodium channel (ENaC) through changes in its trafficking, membrane expression and open probability. Plasma levels of aldosterone are decreased in preeclampsia. Herein we postulated that if aldosterone regulates ENaC expression then its expression should be decreased in preeclampsia. We found a diminished expression of the three subunits of the ENaC in the membranes of preeclamptic placentas in comparison with the normal ones. Although the role of ENaC in placental tissues is poorly understood, these differences may have consequences for the ion transport involved in the pathophysiology of preeclampsia.

Concepts: Cell membrane, Aldosterone, Sodium, Placenta, Atrial natriuretic peptide, Amiloride, Epithelial sodium channel, Triamterene

28

Epithelial Na channels (ENaCs) play a crucial role in ion and fluid regulation in the lung. In cystic fibrosis (CF), Na hyperabsorption results from ENaC overactivity, leading to airway dehydration. Previous work has demonstrated functional genetic variation of SCNN1A (the gene encoding the ENaC α-subunit), manifesting as an alanine (A) to threonine (T) substitution at amino acid 663, with the αT663 variant resulting in a more active channel.

Concepts: DNA, Protein, Amino acid, Amine, Ammonia, RNA, Cystic fibrosis, Epithelial sodium channel

27

Blessed were the days when it all made sense and the apparent mechanism for edema formation in nephrotic syndrome was straightforward: the kidneys lost protein in the urine, which lowered the plasma oncotic pressure. Thus, fluid leaked into the interstitium, depleting the intravascular volume with subsequent activation of renin/aldosterone and consequent avid renal sodium retention. As simple as that! Unfortunately, a number of clinical and laboratory observations have raised serious concerns about the accuracy of this “underfill” hypothesis. Instead, an “overfill” hypothesis was generated. Under this assumption, the nephrotic syndrome not only leads to urinary protein wasting, but also to primary sodium retention with consequent intravascular overfilling, with the excess fluid spilling into the flood plains of the interstitium, leading to edema. Recently, an attractive mechanism was proposed to explain this primary sodium retention: proteinuria includes plasma proteinases, such as plasmin, which activate the epithelial sodium channel in the collecting duct, ENaC. In this edition, further evidence for this hypothesis is being presented by confirming increased plasmin content in the urine of children with nephrotic syndrome and demonstrating ENaC activation. If correct, this hypothesis would provide a simple treatment for the edema: pharmacological blockade of ENaC, for instance, with amiloride. Yet, how come clinicians have not empirically discovered the presumed power of ENaC blockers in nephrotic syndrome? And why is it that some patients clearly show evidence of intravascular underfilling? The controversy of over- versus underfilling demonstrates how much we still have to learn about the pathophysiology of nephrotic syndrome.

Concepts: Scientific method, Kidney, Nephrotic syndrome, Ureter, Aldosterone, Edema, Atrial natriuretic peptide, Epithelial sodium channel

27

BACKGROUND: Pseudohypoaldosteronism type 1 (PHA 1) is a monogenic disease caused by mutations in the genes encoding the human mineralocorticiod receptor (MR) or the α (SCNN1A), β (SCNN1B) or γ (SCNN1G) subunit of the epithelial Na+ channel (ENaC). While autosomal dominant mutation of the MR cause renal PHA 1, autosomal recessive mutations of the ENaC lead to systemic PHA 1. In the latter, affected children suffer from neonatal onset of multi-organ salt loss and often exhibit cystic fibrosis-like pulmonary symptoms. OBJECTIVE: We searched for underlying mutations in 7 unrelated children with systemic PHA 1, all offspring of healthy consanguineous parents. METHODS AND RESULTS: Amplification of the SCNN1A gene and sequencing of all 13 coding exons unravelled mutations in all of our patients. We found 5 novel homozygous mutations (c.587_588insC in two patients, c.1342_1343insTACA, c.742delG, c.189C>A, c.1361-2A>G) and one known mutation (c.1474C>T) leading to truncation of the αENaC protein. All parents were asymptomatic heterozygous carriers of the respective mutations, confirming the autosomal recessive mode of inheritance. Five out of seven patients exhibited pulmonary symptoms in the neonatal period. CONCLUSION: The alpha subunit is essential for ENaC function and mutations truncating the pore-forming part of the protein lead to systemic PHA 1. Based on current knowledge, the pulmonary phenotype cannot be satisfactorily predicted.

Concepts: DNA, Gene, Genetics, Mutation, Evolution, DNA repair, Zygosity, Epithelial sodium channel

27

The effects of aldosterone and mineralocorticoid receptor (MR) blockers on presympathetic neurons in the rostral ventrolateral medulla (RVLM) are well studied. To directly investigate whether aldosterone, eplerenone (an MR blocker), FAD286 (an aldosterone synthase inhibitor) and benzamil (an epithelial sodium channel (ENaC) blocker) affect RVLM neurons, we examined changes in the membrane potentials (MPs) of bulbospinal RVLM neurons using the whole-cell patch-clamp technique during superfusion with these drugs to brainstem-spinal cord preparations. Aldosterone superfusion (0.1 μmol/l) depolarized the RVLM neurons. In contrast, eplerenone superfusion (1 μmol/l) hyperpolarized them. To evaluate the existence of aldosterone, FAD286 superfusion (10 μmol/l) was performed, and the RVLM neurons became hyperpolarized during FAD superfusion. These data suggest that MRs exist and that aldosterone is synthesized in the brainstem. Benzamil superfusion (1 μmol/l) hyperpolarized the RVLM neurons. To clarify whether aldosterone, eplerenone, FAD286 and benzamil acted directly on the RVLM neurons, a low-Ca(2+), high-Mg(2+) solution was used to block the synaptic input to the RVLM neurons, and the above-mentioned drugs were added during the low-Ca(2+) superfusion. During the aldosterone superfusion, the RVLM neurons became depolarized, and they became hyperpolarized during eplerenone, FAD286 or benzamil superfusion. Importantly, when aldosterone was superfused after the benzamil solution, the MPs of the RVLM neurons did not depolarize. These results suggest that MRs are present in the RVLM neurons and that aldosterone is synthesized in the RVLM. The RVLM neurons themselves possess ENaCs, and ENaCs are the underlying mechanism by which aldosterone activates RVLM neurons.Hypertension Research advance online publication, 31 January 2013; doi:10.1038/hr.2012.224.

Concepts: Action potential, Ion channel, Electrophysiology, Aldosterone, Sodium, Mineralocorticoid, Mineralocorticoid receptor, Epithelial sodium channel

27

Aldosterone is a key regulator of the epithelial sodium channel (ENaC) and stimulates protein methylation on the β-subunit of the ENaC. We found that aldosterone (100 nM) promotes cellular migration in a wound-healing model in trophoblastic BeWo cells. Here, we tested if the positive influence of aldosterone on wound healing is related to methylation reactions. Cell migration and proliferation were measured in BeWo cells at 6 h, when mitosis is still scarce. Cell migration covered 12.4, 25.3, 19.6 and 45.1 % of the wound when cultivated under control, aldosterone (12 h), 8Br-cAMP and aldosterone plus 8Br-cAMP, respectively. Amiloride blocked the effects of aldosterone alone or in the presence of 8Br-cAMP on wound healing. Wound healing decreased in aldosterone (plus 8Br-cAMP) coexposed with the methylation inhibitor 3-deaza-adenosine (3-DZA, 12.9 % reinvasion of the wound). There was an increase in wound healing in aldosterone-, 8Br-cAMP- and 3-DZA-treated cells in the presence of AdoMet, a methyl donor, compared to cells in the absence of AdoMet (27.3 and 12.9 % reinvasion of the wound, respectively). Cell proliferation assessed with the reagent MTT was not changed in any of these treatments, suggesting that cellular migration is the main factor for reinvasion of wound healing. Electrophysiological studies showed an increase in ENaC current in the presence of aldosterone. This effect was higher with 8Br-cAMP, and there was a decrease when 3-DZA was present. AdoMet treatment partially reversed this phenomenon. We suggest that aldosterone positively influences wound healing in BeWo cells, at least in part through methylation of the ENaC.

Concepts: DNA, Cell division, Aldosterone, Methylation, Sodium, Epithelial sodium channel

4

Excess aldosterone is an important contributor to hypertension and cardiovascular disease. Conversely, low circulating aldosterone causes salt wasting and hypotension. Aldosterone activates mineralocorticoid receptors (MRs) to increase epithelial sodium channel (ENaC) activity. However, aldosterone may also stimulate the thiazide-sensitive Na(+)-Cl(-) cotransporter (NCC). Here, we generated mice in which MRs could be deleted along the nephron to test this hypothesis. These kidney-specific MR-knockout mice exhibited salt wasting, low BP, and hyperkalemia. Notably, we found evidence of deficient apical orientation and cleavage of ENaC, despite the salt wasting. Although these mice also exhibited deficient NCC activity, NCC could be stimulated by restricting dietary potassium, which also returned BP to control levels. Together, these results indicate that MRs regulate ENaC directly, but modulation of NCC is mediated by secondary changes in plasma potassium concentration. Electrolyte balance and BP seem to be determined, therefore, by a delicate interplay between direct and indirect mineralocorticoid actions in the distal nephron.

Concepts: Hypertension, Blood pressure, Aldosterone, Sodium, Potassium, Diuretic, Atrial natriuretic peptide, Epithelial sodium channel

1

In a search for secondary plant compounds that bind to the glucocorticoid receptor (GR), the cyclobutane lignan endiandrin A was discovered from the rainforest tree Endiandra anthropophagorum Domin. Our present study aims to characterize the effect of endiandrin A on GR-dependent induction of colonic sodium transport. The effect of endiandrin A was analyzed in GR-expressing colonic HT-29/B6 cells (HT-29/B6-GR). GR transactivation and subcellular localization were investigated by reporter gene assay and immunofluorescence. Epithelial sodium channel (ENaC) was analyzed by qRT-PCR and by measuring amiloride-sensitive short-circuit current (I(sc)) in Ussing chambers. Endiandrin A (End A) has been identified as GR receptor binder. However, it did not cause significant GR transactivation as pGRE-luciferase activity was only 7% of that of the maximum effect of dexamethasone. Interestingly, endiandrin A had a significant impact on dexamethasone-dependent sodium absorption in cells co-exposed to tumor necrosis factor (TNF)-α. This was in part due to up-regulation of β- and γ-ENaC subunit expression. Endiandrin A potentiated GR-mediated transcription by increasing GR protein expression and phosphorylation. It inhibited c-Jun N-terminal kinase (JNK) activation induced by dexamethasone and/or TNF-α and increased levels of GR localized to the nucleus. Additionally, endiandrin A increased the serum- and glucocorticoid-induced kinase (sgk)-1 via activation of p38. Finally, the regulation of ENaC function by endiandrin A was confirmed in rat native colon. In conclusion, endiandrin A potentiates glucocorticoid-driven activation of colonic epithelial sodium channels via JNK inhibition and p38 activation due to transcriptional up-regulation of β- and γ-ENaC-subunits along with induction of sgk-1.

Concepts: DNA, Protein, Gene, Genetics, Gene expression, Molecular biology, Rainforest, Epithelial sodium channel