SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Epinephrine

149

According to the catecholaldehyde hypothesis, the toxic dopamine metabolite 3,4-dihydroxyphenylacetaldehyde (DOPAL) contributes to the loss of nigrostriatal dopaminergic neurons in Parkinson’s disease. Monoamine oxidase-A (MAO-A) catalyzes the conversion of intra-neuronal dopamine to DOPAL and may serve as a therapeutic target. The “cheese effect” - paroxysmal hypertension evoked by tyramine-containing foodstuffs-limits clinical use of irreversible MAO-A inhibitors. Combined MAO-A/B inhibition decreases DOPAL production in rat pheochromocytoma PC12 cells, but whether reversible MAO-A inhibitors or MAO-B inhibitors decrease endogenous DOPAL production has been unknown. We compared the potencies of MAO inhibitors in attenuating DOPAL production and examined possible secondary effects on dopamine storage, constitutive release, synthesis, and auto-oxidation. Catechol concentrations were measured in cells and medium after incubation with the irreversible MAO-A inhibitor clorgyline, three reversible MAO-A inhibitors, or the MAO-B inhibitors selegiline or rasagiline for 180 minutes. Reversible MAO-A inhibitors were generally ineffective, whereas clorgyline (1 nM), rasagiline (500 nM), and selegiline (500 nM) decreased DOPAL levels in the cells and medium. All 3 drugs also increased dopamine and norepinephrine, decreased DOPA, and increased cysteinyl-dopamine concentrations in the medium, suggesting increased vesicular uptake and constitutive release, decreased dopamine synthesis, and increased dopamine auto-oxidation. In conclusion, clorgyline, rasagiline, and selegiline decrease production of endogenous DOPAL. At relatively high concentrations the latter drugs probably lose their selectivity for MAO-B. Possibly offsetting increased formation of potentially toxic oxidation products and decreased formation of DOPAL might account for the failure of large clinical trials of MAO-B inhibitors to demonstrate slowing of neurodegeneration in Parkinson’s disease.

Concepts: Parkinson's disease, Neurotransmitter, Epinephrine, Dopamine, Monoamine oxidase, Rasagiline, Phenethylamine, Monoamine oxidase inhibitors

124

Brown adipose tissue (BAT) plays a central role in regulating energy homeostasis, and may provide novel strategies for the treatment of human obesity. BAT-mediated thermogenesis is regulated by mitochondrial uncoupling protein 1 (UCP1) in classical brown and ectopic beige adipocytes, and is controlled by sympathetic nervous system (SNS). Previous work indicated that fish oil intake reduces fat accumulation and induces UCP1 expression in BAT; however, the detailed mechanism of this effect remains unclear. In this study, we investigated the effect of fish oil on energy expenditure and the SNS. Fish oil intake increased oxygen consumption and rectal temperature, with concomitant upregulation of UCP1 and the β3 adrenergic receptor (β3AR), two markers of beige adipocytes, in the interscapular BAT and inguinal white adipose tissue (WAT). Additionally, fish oil intake increased the elimination of urinary catecholamines and the noradrenaline (NA) turnover rate in interscapular BAT and inguinal WAT. Furthermore, the effects of fish oil on SNS-mediated energy expenditure were abolished in transient receptor potential vanilloid 1 (TRPV1) knockout mice. In conclusion, fish oil intake can induce UCP1 expression in classical brown and beige adipocytes via the SNS, thereby attenuating fat accumulation and ameliorating lipid metabolism.

Concepts: Metabolism, Fat, Adipose tissue, Epinephrine, Norepinephrine, Brown adipose tissue, Thermogenesis, Uncoupling protein

72

 To evaluate whether patients who experience cardiac arrest in hospital receive epinephrine (adrenaline) within the two minutes after the first defibrillation (contrary to American Heart Association guidelines) and to evaluate the association between early administration of epinephrine and outcomes in this population.

Concepts: Cardiac arrest, Asystole, Epinephrine

30

Context: Neuroendocrine and immune stresses imposed by chronic sleep restriction are known to be involved in the harmful cardiovascular effects associated with poor sleep. Objectives: Despite a well-known beneficial effect of napping on alertness, its effects on neuroendocrine stress and immune responses after sleep restriction are largely unknown. Design: A strictly controlled (sleep-wake status, light environment, caloric intake), crossover, randomized design in continuously polysomnography-monitored subjects. Setting: The study was conducted in a laboratory-based study. Participants: The subjects were 11 healthy young men. Intervention: We investigated the effects on neuroendocrine and immune biomarkers of a night of sleep restricted to 2 h followed by a day without naps or with 30 minute morning and afternoon naps, both conditions followed by an ad libitum recovery night starting at 20:00. Main Outcome Measures: Salivary interleukin-6 and urinary catecholamines were assessed throughout the daytime study periods. Results: The increase in norepinephrine values seen at the end of the afternoon after the sleep-restricted night was not present when the subjects had the opportunity to take naps. Interleukin-6 changes observed after sleep deprivation were also normalized after napping. During the recovery day in the no-nap condition, there were increased levels of afternoon epinephrine and dopamine, which was not the case in the nap condition. A recovery night after napping was associated with a reduced amount of slow-wave sleep compared to after the no-nap condition. Conclusions: Our data suggest that napping has stress-releasing and immune effects. Napping could be easily applied in real settings as a countermeasure to the detrimental health consequences of sleep debt.

Concepts: Immune system, Sleep, Sleep deprivation, Epinephrine, Dopamine, Norepinephrine, Catechol-O-methyl transferase, Catecholamine

29

The catecholamines dopamine (DA), norepinephrine (NE) and epinephrine (E) are neurotransmitters and hormones that mediate stress responses in tissues and plasma. The expression of β-amyloid precursor protein (APP) is responsive to stress and is high in tissues rich in catecholamines. We recently reported that APP is a ferroxidase, subsuming, in neurons and other cells, the iron-export activity that ceruloplasmin mediates in glia. Here we report that, like ceruloplasmin, APP also oxidizes synthetic amines and catecholamines catalytically (K(m) NE=0.27 mM), through a site encompassing its ferroxidase motif and selectively inhibited by zinc. Accordingly, APP knockout mice have significantly higher levels of DA, NE and E in brain, plasma and select tissues. Consistent with this, these animals have increased resting heart rate and systolic blood pressure as well as suppressed prolactin and lymphocyte levels. These findings support a role for APP in extracellular catecholaminergic clearance.

Concepts: Neurotransmitter, Epinephrine, Dopamine, Norepinephrine, Monoamine oxidase, Tyrosine, L-DOPA, Catecholamine

29

Takotsubo cardiomyopathy is seen, though rarely, in anaphylaxis treated with epinephrine. Stress cardiomyopathy is most likely to occur in middle-aged women. The underlying etiology is believed to be related to catecholamine release in periods of intense stress. Catecholamines administered exogenously, and those secreted by neuroendocrine tumors (e.g., pheochromocytoma) or during anaphylaxis have been reported to cause apical ballooning syndrome, or takotsubo syndrome. However, reverse takotsubo stress cardiomyopathy is rarely seen or reported in anaphylaxis treated with epinephrine.

Concepts: Cardiomyopathy, Neuroendocrine tumor, Epinephrine, Norepinephrine, Cardiovascular diseases, Pheochromocytoma, Catecholamine, Takotsubo cardiomyopathy

28

A dimeric Cu(II) complex [Cu(μ(2)-hep)(hep-H)](2)·2ClO(4) (1) containing bidentate (hep-H=2-(2-hydroxyethyl)pyridine) ligand was synthesized and characterized by single crystal X-ray diffraction studies. Each Cu-ion in 1 is in a distorted square pyramidal geometry. Further 1 along with silver nanoparticles (SNPs) have been used as modifier in the construction of a biomimetic sensor (1-SNP-GCPE) for determining certain catecholamines viz., dopamine (DA), levodopa (l-Dopa), epinephrine (EP) and norepinephrine (NE) using cyclic voltammetry, chronocoulometry, electrochemical impedance spectroscopy and adsorptive stripping square wave voltammetry (AdSSWV). Finally, the catalytic properties of the sensor were characterized by chronoamperometry. Employing AdSSWV, the calibration curves showed linear response ranging between 10(-6) and 10(-9)M for all the four analytes with detection limits (S/N=3) of 8.52×10(-10)M, 2.41×10(-9)M, 3.96×10(-10)M and 3.54×10(-10)M for DA, l-Dopa, EP and NE respectively. The lifetime of the biomimetic sensor was 3 months at room temperature. The prepared modified electrode shows several advantages such as simple preparation method, high sensitivity, high stability, ease of preparation and regeneration of the electrode surface by simple polishing along with excellent reproducibility. The method has been applied for the selective and precise analysis of DA, l-Dopa, EP and NE in pharmaceutical formulations, urine and blood serum samples.

Concepts: Electrochemistry, Neurotransmitter, Epinephrine, Dopamine, Norepinephrine, L-DOPA, Catecholamine, Catecholamines

28

The aim of this study was to determine the external validity of Taekwondo-specific exercise protocols. 10 male international Taekwondo competitors (age 18±2 years) took part in a championship combat and an exercise protocol that simulated the activity pattern of Taekwondo combat. Heart rate and venous blood samples were obtained in both settings. Despite similarity in the activity profiles, the championship Taekwondo combats elicited higher (p<0.05) heart rate (188±8 beats.min - 1), plasma lactate (12.2±4.6 mmol.L - 1), glucose (10.3±1.1 mmol.L - 1), -glycerol (143.4±49.4 µmol.L - 1), -adrena-line (2.7±1.7 nmol.L - 1) and noradrenaline (14.3±9.4 nmol.L - 1) responses than the -Taekwondo exercise protocol (heart rate: 172±4 beats.min - 1; plasma lactate: 3.6±2.7 mmol.L - 1; glucose: 5.9±0.8 mmol.L - 1; glycerol: 77.7±21.3 µmol.L - 1; adrenaline: 0.6±0.2 nmol.L - 1 and noradrenaline: 3.0±1.1 nmol.L - 1). This discrepancy in the physiological responses appeared to be mediated by a reduced stress response in the Taekwondo exercise protocol. These findings suggest that Taekwondo-specific exercise protocols are not appropriate to study the physiological demands of Taekwondo. -Strategies designed to increase the stress response in this setting may be necessary to improve the external validity of this experimental framework.

Concepts: Blood, Physiology, Heart, Pulse, Vein, Epinephrine, Norepinephrine, Kick

28

Piribedil is a non-ergoline, dopamine D(2)/D(3) receptor agonist with α(2) adrenoceptor antagonist properties that has been used in the treatment of Parkinson’s disease (PD). Noradrenergic neurotransmission may be involved in the pathogenesis of dyskinesias induced by chronic treatment with L-DOPA (3,4-dihydroxyphenylalanine, levodopa), but its role in the in vivo action of piribedil or on different subclasses of abnormal involuntary movements (AIMs) remains unclear. The aims of this study were therefore (1) to investigate the anti-dyskinetic effects of piribedil on L-DOPA-induced contralateral turning behaviour, locomotive dyskinesias (LD), axial dystonia (AD), orolingual dyskinesia (OD) and forelimb dyskinesia (FD) and (2) to compare these effects to the α(2) adrenoceptor antagonist, idazoxan, or the α(2) adrenoceptor agonist, clonidine. Rats were unilaterally lesioned with 6-hydroxydopamine (6-OHDA) and injected intraperitoneally twice daily with L-DOPA methylester (12.5 mg/kg) and benserazide (3.25 mg/kg). After 3 weeks, the effects of piribedil (5, 15, 40 mg/kg), clonidine (0.15 mg/kg), idazoxan (10 mg/kg) and combinations of these drugs were scored during 2 h. Pre-treatment with 5 and 40 mg/kg, but not 15 mg/kg, of piribedil reduced turning behaviour and AD, OD and FD, but piribedil increased LD at the 40 mg/kg doses compared to the L-DOPA group. Idazoxan induced similar effects as piribedil (40 mg/kg), except that it had no effect on LD. Idazoxan blocked the effect of piribedil on AD and FD. Clonidine reduced all AIMs except OD, possibly because of its sedative effect. Clonidine blocked the effect of piribedil on AD, OD and FD. These data suggest a differential involvement of α(2) adrenergic receptors in the action of piribedil on different subclasses of L-DOPA-induced dyskinesias.

Concepts: Parkinson's disease, Receptor antagonist, Agonist, Epinephrine, Dopamine, Norepinephrine, Adrenergic receptor, L-DOPA

28

Recurrent apnea with intermittent hypoxia (IH) is a major clinical problem in infants born preterm. Carotid body chemo-reflex and catecholamine secretion from adrenal medullary chromaffin cells (AMC) are important for maintenance of cardio-respiratory homeostasis during hypoxia. This article highlights studies on the effects of IH on O(2) sensing by the carotid body and AMC in neonatal rodents. Neonatal IH augments hypoxia-evoked carotid body sensory excitation and catecholamine secretion from AMC which are mediated by reactive oxygen species (ROS)-dependent recruitment of endothelin-1 and Ca(2+) signaling, respectively. The effects of neonatal IH persist into adulthood. Evidence is emerging that neonatal IH initiates epigenetic mechanisms involving DNA hypermethylation contributing to long-lasting increase in ROS levels. Since adult human subjects born preterm exhibit higher incidence of sleep-disordered breathing and hypertension, DNA hypomethylating agents might offer a novel therapeutic intervention to decrease long-term cardio-respiratory morbidity caused by neonatal IH.

Concepts: Oxygen, Epigenetics, Mitochondrion, Reactive oxygen species, Methylation, Sleep apnea, Epinephrine, Adrenal medulla