Discover the most talked about and latest scientific content & concepts.

Concept: Epidermis


Morgellons disease is an emerging skin disease characterized by formation of dermal filaments associated with multisystemic symptoms and tick-borne illness. Some clinicians hypothesize that these often colorful dermal filaments are textile fibers, either self-implanted by patients or accidentally adhering to lesions, and conclude that patients with this disease have delusions of infestation. We present histological observations and electron microscopic imaging from representative Morgellons disease samples revealing that dermal filaments in these cases are keratin and collagen in composition and result from proliferation and activation of keratinocytes and fibroblasts in the epidermis. Spirochetes were detected in the dermatological specimens from our study patients, providing evidence that Morgellons disease is associated with an infectious process.

Concepts: Medicine, Infectious disease, Medical terms, Collagen, Hospital, Skin, Epidermis, Keratin


A hydrophobic cuticle consisting of waxes and the polyester cutin covers the aerial epidermis of all land plants, providing essential protection from desiccation and other stresses. We have determined the enzymatic basis of cutin polymerization through characterization of a tomato extracellular acyltransferase, CD1, and its substrate, 2-mono(10,16-dihydroxyhexadecanoyl)glycerol. CD1 has in vitro polyester synthesis activity and is required for cutin accumulation in vivo, indicating that it is a cutin synthase.

Concepts: Plant, In vivo, In vitro, Annual plant, Epidermis, Bryophyte, Moss, Plant cuticle


BACKGROUND: Estrogen has been reported to accelerate cutaneous wound healing. This research studies the effect of young coconut juice (YCJ), presumably containing estrogen-like substances, on cutaneous wound healing in ovairectomized rats. METHODS: Four groups of female rats (6 in each group) were included in this study. These included sham-operated, ovariectomized (ovx), ovx receiving estradiol benzoate (EB) injections intraperitoneally, and ovx receiving YCJ orally. Two equidistant 1-cm full-thickness skin incisional wounds were made two weeks after ovariectomy. The rats were sacrificed at the end of the third and the fourth week of the study, and their serum estradiol (E2) level was measured by chemiluminescent immunoassay. The skin was excised and examined in histological sections stained with H&E, and immunostained using anti-estrogen receptor (ER-alpha an ER-beta) antibodies. RESULTS: Wound healing was accelerated in ovx rats receiving YCJ, as compared to controls. This was associated with significantly higher density of immunostaining for ER-alpha an ER-beta in keratinocytes, fibroblasts, white blood cells, fat cells, sebaceous gland, skeletal muscles, and hair shafts and follicles. This was also associated with thicker epidermis and dermis, but with thinner hypodermis. In addition, the number and size of immunoreactive hair follicles for both ER-alpha and ER-beta were the highest in the ovx+YCJ group, as compared to the ovx+EB group. CONCLUSIONS: This study demonstrates that YCJ has estrogen-like characteristics, which in turn seem to have beneficial effects on cutaneous wound healing.

Concepts: Wound healing, Healing, Estradiol, Skin, Dermis, Epidermis, Sebaceous gland, Coconut water


The objective of this study was to prepare a suitable formulation for dermal delivery of diflucortolone valerate (DFV) that would maintain the localization in skin layers without any penetration and to optimize efficiency of DFV. Drug-loaded lecithin/chitosan nanoparticles with high entrapment efficiency (86.8%), were successfully prepared by ionic interaction technique. Sustained release of DFV was achieved without any initial burst release. Nanoparticles were also incorporated into chitosan gel at different ratios for preparing a more suitable formulation for topical drug delivery with adequate viscosity. In ex-vivo permeation studies, nanoparticles increased the accumulation of DFV especially in the stratum corneum + epidermis of rat skin without any significant permeation. Retention of DFV from nanoparticle in chitosan gel formulation (0.01%) was twofold higher than commercial cream, although it contained ten times less DFV. Nanoparticles in gel formulations produced significantly higher edema inhibition in rats compared with commercial cream in in-vivo studies. Skin blanching assay using a chromameter showed vasoconstriction similar to that of the commercial product. There were no barrier function changes upon application of nanoparticles. In-vitro and in-vivo results demonstrated that lecithin/chitosan nanoparticles in chitosan gel may be a promising carrier for dermal delivery of DFV in various skin disorders.

Concepts: Colloid, Skin, Topical, Dermis, Epidermis, Keratin, Stratum corneum, Topical steroid


Skin hyperpigmentation is characterized by increased melanin synthesis and deposition that can cause significant psychosocial and psychological distress. Although several cytokine-receptor signaling cascades contribute to the formation of ultraviolet B-induced cutaneous hyperpigmentation, their possible involvement in other types of skin hyperpigmentation has never been clearly addressed. Since our continuous studies using skin specimens from more than 30 subjects with ethnic skin diversity emphasized a consistent augmentation in the expression of endothelin-1 (ET-1) and its receptor (Endothelin B receptor, ET-B) in hyperpigmented lesions, including senile lentigos (SLs), the precise function of ET-1 signaling was investigated in the present study. In line with previous studies, ET-1 significantly induced melanogenesis followed by increases in melanosome transport in melanocytes and in its transfer to keratinocytes while inhibition of ET-B function substantially depressed melanogenic ability in tissue-cultured SLs. Additionally, in agreement with a previous report that the formation of autophagosomes rather than melanosomes is stimulated according to starvation or defective melanosome production, ET-1 was found to remarkably augment the expression of components necessary for early melanosome formation, indicating its counteraction against autophagy-targeting melanosome degradation in melanocytes. Despite the lack of substantial impact of ET-1 on keratinocyte melanogenic functions, the expression of ET-1 was enhanced following melanosome uptake by keratinocytes. Taken together, our data suggest that ET-1 plays a substantial role in the development and/or maintenance of skin hyperpigmentation in reciprocal cooperation with increased melanosome incorporation.

Concepts: Melanoma, Skin, Melanin, Epidermis, Human skin color, Skin anatomy, Melanocyte, Melanosome


Junctional epidermolysis bullosa (JEB) is a severe and often lethal genetic disease caused by mutations in genes encoding the basement membrane component laminin-332. Surviving patients with JEB develop chronic wounds to the skin and mucosa, which impair their quality of life and lead to skin cancer. Here we show that autologous transgenic keratinocyte cultures regenerated an entire, fully functional epidermis on a seven-year-old child suffering from a devastating, life-threatening form of JEB. The proviral integration pattern was maintained in vivo and epidermal renewal did not cause any clonal selection. Clonal tracing showed that the human epidermis is sustained not by equipotent progenitors, but by a limited number of long-lived stem cells, detected as holoclones, that can extensively self-renew in vitro and in vivo and produce progenitors that replenish terminally differentiated keratinocytes. This study provides a blueprint that can be applied to other stem cell-mediated combined ex vivo cell and gene therapies.

Concepts: DNA, Gene, Genetics, Cell, In vivo, In vitro, Epidermis, Epidermolysis bullosa


The value of a leaf to a plant depends on the fate of its exported assimilates. When these are translocated and used in the growth of new leaves they contribute to further carbon assimilation. The result is that their value to the plant is greatest while they are young. In contrast, when assimilates are translocated to storage, assimilates produced early and late in the life of a leaf are of equal value. This arguments is developed in relation to the optimal distribution of mineral resources and defenses during the life of leaves.

Concepts: Photosynthesis, Water, Fern, Epidermis, Leaf, Plant morphology, Chlorophyll, Gymnosperm


Here we describe a new mouse model that exploits the pattern of expression of the high-affinity IgG receptor (CD64) and allows diphtheria toxin (DT)-mediated ablation of tissue-resident macrophages and monocyte-derived cells. We found that the myeloid cells of the ear skin dermis are dominated by DT-sensitive, melanin-laden cells that have been missed in previous studies and correspond to macrophages that have ingested melanosomes from neighboring melanocytes. Those cells have been referred to as melanophages in humans. We also identified melanophages in melanocytic melanoma. Benefiting of our knowledge on melanophage dynamics, we determined the identity, origin, and dynamics of the skin myeloid cells that capture and retain tattoo pigment particles. We showed that they are exclusively made of dermal macrophages. Using the possibility to delete them, we further demonstrated that tattoo pigment particles can undergo successive cycles of capture-release-recapture without any tattoo vanishing. Therefore, congruent with dermal macrophage dynamics, long-term tattoo persistence likely relies on macrophage renewal rather than on macrophage longevity.

Concepts: Immune system, Protein, Skin, Melanin, Ear, Dermis, Epidermis, Melanocyte


Caloric restriction (CR) is the most effective intervention known to enhance lifespan, but its effect on the skin is poorly understood. Here, we show that CR mice display fur coat remodeling associated with an expansion of the hair follicle stem cell (HFSC) pool. We also find that the dermal adipocyte depot (dWAT) is underdeveloped in CR animals. The dermal/vennule annulus vasculature is enlarged, and a vascular endothelial growth factor (VEGF) switch and metabolic reprogramming in both the dermis and the epidermis are observed. When the fur coat is removed, CR mice display increased energy expenditure associated with lean weight loss and locomotion impairment. Our findings indicate that CR promotes extensive skin and fur remodeling. These changes are necessary for thermal homeostasis and metabolic fitness under conditions of limited energy intake, suggesting a potential adaptive mechanism.

Concepts: Angiogenesis, Vascular endothelial growth factor, Skin, Knowledge, Dermis, Epidermis, Skin anatomy, Fur


Keratin 16 (K16) is a cytoskeletal scaffolding protein highly expressed at pressure-bearing sites of the mammalian footpad. It can be induced in hyperproliferative states such as wound healing, inflammation and cancer. Here we show that the inactive rhomboid protease RHBDF2 (iRHOM2) regulates thickening of the footpad epidermis through its interaction with K16. K16 expression is absent in the thinned footpads of irhom2(-/-) mice compared with irhom2(+/+)mice, due to reduced keratinocyte proliferation. Gain-of-function mutations in iRHOM2 underlie Tylosis with oesophageal cancer (TOC), characterized by palmoplantar thickening, upregulate K16 with robust downregulation of its type II keratin binding partner, K6. By orchestrating the remodelling and turnover of K16, and uncoupling it from K6, iRHOM2 regulates the epithelial response to physical stress. These findings contribute to our understanding of the molecular mechanisms underlying hyperproliferation of the palmoplantar epidermis in both physiological and disease states, and how this ‘stress’ keratin is regulated.

Concepts: DNA, Protein, Gene expression, Mutation, Wound healing, Skin, Epidermis, Keratin