SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Enzyme

177

BACKGROUND: A recent study using a rat model found significant differences at the time of diabetes onset in the bacterial communities responsible for type 1 diabetes modulation. We hypothesized that type 1 diabetes in humans could also be linked to a specific gut microbiota. Our aim was to quantify and evaluate the difference in the composition of gut microbiota between children with type 1diabetes and healthy children and to determine the possible relationship of the gut microbiota of children with type 1 diabetes with the glycemic level. METHODS: A case-control study was carried out with 16 children with type 1 diabetes and 16 healthy children. The fecal bacteria composition was investigated by polymerase chain reaction-denaturing gradient gel electrophoresis and real-time quantitative polymerase chain reaction. RESULTS: The mean similarity index was 47.39% for the healthy children and 37.56% for the children with diabetes, whereas the intergroup similarity index was 26.69%. In the children with diabetes, the bacterial number of Actinobacteria and Firmicutes, and the Firmicutes to Bacteroidetes ratio were all significantly decreased, with the quantity of Bacteroidetes significantly increased with respect to healthy children. At the genus level, we found a significant increase in the number of Clostridium, Bacteroides and Veillonella and a significant decrease in the number of Lactobacillus, Bifidobacterium, Blautia coccoides/Eubacterium rectale group and Prevotella in the children with diabetes. We also found that the number of Bifidobacterium and Lactobacillus, and the Firmicutes to Bacteroidetes ratio correlated negatively and significantly with the plasma glucose level while the quantity of Clostridium correlated positively and significantly with the plasma glucose level in the diabetes group. CONCLUSIONS: This is the first study showing that type 1 diabetes is associated with compositional changes in gut microbiota. The significant differences in the number of Bifidobacterium, Lactobacillus and Clostridium and in the Firmicutes to Bacteroidetes ratio observed between the two groups could be related to the glycemic level in the group with diabetes. Moreover, the quantity of bacteria essential to maintain gut integrity was significantly lower in the children with diabetes than the healthy children. These findings could be useful for developing strategies to control the development of type 1 diabetes by modifying the gut microbiota.

Concepts: Bacteria, Gut flora, Polymerase chain reaction, Nutrition, Enzyme, Diabetes mellitus, Firmicutes, Bacteroidetes

176

Bioluminescence methodologies have been extraordinarily useful due to their high sensitivity, broad dynamic range, and operational simplicity. These capabilities have been realized largely through incremental adaptations of native enzymes and substrates, originating from luminous organisms of diverse evolutionary lineages. We engineered both an enzyme and substrate in combination to create a novel bioluminescence system capable of more efficient light emission with superior biochemical and physical characteristics. Using a small luciferase subunit (19 kDa) from the deep sea shrimp Oplophorus gracilirostris, we have improved luminescence expression in mammalian cells ∼2.5 million-fold by merging optimization of protein structure with development of a novel imidazopyrazinone substrate (furimazine). The new luciferase, NanoLuc, produces glow-type luminescence (signal half-life >2 h) with a specific activity ∼150-fold greater than that of either firefly (Photinus pyralis) or Renilla luciferases similarly configured for glow-type assays. In mammalian cells, NanoLuc shows no evidence of post-translational modifications or subcellular partitioning. The enzyme exhibits high physical stability, retaining activity with incubation up to 55 °C or in culture medium for >15 h at 37 °C. As a genetic reporter, NanoLuc may be configured for high sensitivity or for response dynamics by appending a degradation sequence to reduce intracellular accumulation. Appending a signal sequence allows NanoLuc to be exported to the culture medium, where reporter expression can be measured without cell lysis. Fusion onto other proteins allows luminescent assays of their metabolism or localization within cells. Reporter quantitation is achievable even at very low expression levels to facilitate more reliable coupling with endogenous cellular processes.

Concepts: Protein, Protein structure, Bacteria, Enzyme, Cell biology, Firefly, Bioluminescence, Luciferase

176

DEAD-box proteins are the largest family of nucleic acid helicases, and are crucial to RNA metabolism throughout all domains of life. They contain a conserved ‘helicase core’ of two RecA-like domains (domains (D)1 and D2), which uses ATP to catalyse the unwinding of short RNA duplexes by non-processive, local strand separation. This mode of action differs from that of translocating helicases and allows DEAD-box proteins to remodel large RNAs and RNA-protein complexes without globally disrupting RNA structure. However, the structural basis for this distinctive mode of RNA unwinding remains unclear. Here, structural, biochemical and genetic analyses of the yeast DEAD-box protein Mss116p indicate that the helicase core domains have modular functions that enable a novel mechanism for RNA-duplex recognition and unwinding. By investigating D1 and D2 individually and together, we find that D1 acts as an ATP-binding domain and D2 functions as an RNA-duplex recognition domain. D2 contains a nucleic-acid-binding pocket that is formed by conserved DEAD-box protein sequence motifs and accommodates A-form but not B-form duplexes, providing a basis for RNA substrate specificity. Upon a conformational change in which the two core domains join to form a ‘closed state’ with an ATPase active site, conserved motifs in D1 promote the unwinding of duplex substrates bound to D2 by excluding one RNA strand and bending the other. Our results provide a comprehensive structural model for how DEAD-box proteins recognize and unwind RNA duplexes. This model explains key features of DEAD-box protein function and affords a new perspective on how the evolutionarily related cores of other RNA and DNA helicases diverged to use different mechanisms.

Concepts: DNA, Protein, Transcription, Metabolism, Enzyme, Virus, RNA, Helicase

175

Ki-67 and RepoMan have key roles during mitotic exit. Previously, we showed that Ki-67 organizes the mitotic chromosome periphery and recruits protein phosphatase 1 (PP1) to chromatin at anaphase onset, in a similar manner as RepoMan (Booth et al., 2014). Here we show how Ki-67 and RepoMan form mitotic exit phosphatases by recruiting PP1, how they distinguish between distinct PP1 isoforms and how the assembly of these two holoenzymes are dynamically regulated by Aurora B kinase during mitosis. Unexpectedly, our data also reveal that Ki-67 and RepoMan bind PP1 using an identical, yet novel mechanism, interacting with a PP1 pocket that is engaged only by these two PP1 regulators. These findings not only show how two distinct mitotic exit phosphatases are recruited to their substrates, but also provide immediate opportunities for the design of novel cancer therapeutics that selectively target the Ki-67:PP1 and RepoMan:PP1 holoenzymes.

Concepts: Cell nucleus, Enzyme, Chromosome, Cell cycle, Kinase, Mitosis, Chromatin, Phosphatase

174

Endothelial hyperpermeability induced by hyperglycemia is the initial step in the development of atherosclerosis, one of the most serious cardiovascular complications in diabetes. In the present study, we investigated the effects of resveratrol (RSV), a bioactive ingredient extracted from Chinese herb rhizoma polygonum cuspidatum, on permeability in vitro and the molecular mechanisms involved. Permeability was assessed by the efflux of fluorescein isothiocyanate (FITC)-dextran permeated through the monolayer endothelial cells (ECs). The mRNA levels, protein expressions, and secretions were measured by quantitative real-time PCR, western blot, and ELISA, respectively. Increased permeability and caveolin-1 (cav-1) expression were observed in monolayer ECs exposed to high glucose. Resveratrol treatment alleviated the hyperpermeability and the overexpression of cav-1 induced by high glucose in a dose-dependent manner. β-Cyclodextrin, a structural inhibitor of caveolae, reduced the hyperpermeability caused by high glucose. Resveratrol also down-regulated the increased expressions of vascular endothelial growth factor (VEGF) and kinase insert domain receptor (KDR, or VEGF receptor-2) induced by high glucose. Inhibition of VEGF/KDR pathway by using SU5416, a selective inhibitor of KDR, alleviated the hyperpermeability and the cav-1 overexpression induced by high glucose. The above results demonstrate that RSV ameliorates caveolae-mediated hyperpermeability induced by high glucose via VEGF/KDR pathway.

Concepts: Protein, Gene expression, Molecular biology, Signal transduction, Enzyme, Angiogenesis, Vascular endothelial growth factor, Endothelium

173

The microaerophilic parasite Trichomonas vaginalis is a causative agent of painful vaginitis or urethritis, termed trichomoniasis, and can also cause preterm delivery or stillbirth. Treatment of trichomoniasis is almost exclusively based on the nitroimidazole drugs metronidazole and tinidazole. Metronidazole resistance in T. vaginalis does occur and is often associated with treatment failure. In most cases, metronidazole-resistant isolates remain susceptible to tinidazole, but cross resistance between the two closely related drugs can be a problem. In this study we measured activities of thioredoxin reductase and flavin reductase in four metronidazole-susceptible and five metronidazole-resistant isolates. These enzyme activities had been previously found to be downregulated in T. vaginalis with high-level metronidazole resistance induced in the laboratory. Further, we aimed at identifying factors causing metronidazole resistance and compared the protein expression profiles of all nine isolates by application of two-dimensional gel electrophoresis (2DE). Thioredoxin reductase activity was nearly equal in all strains assayed but flavin reductase activity was clearly down-regulated, or even absent, in metronidazole-resistant strains. Since flavin reductase has been shown to reduce oxygen to hydrogen peroxide, its down-regulation could significantly contribute to the impairment of oxygen scavenging as reported by others for metronidazole-resistant strains. Analysis by 2DE revealed down-regulation of alcohol dehydrogenase 1 (ADH1) in strains with reduced sensitivity to metronidazole, an enzyme that could be involved in detoxification of intracellular acetaldehyde.

Concepts: Protein, Oxygen, Alcohol, Molecular biology, Enzyme, Gel electrophoresis, Alcohol dehydrogenase, Trichomonas vaginalis

172

A library of 367 protein kinase inhibitors, the GSK Published Kinase Inhibitor Set (PKIS), which has been annotated for protein kinase family activity and is available for public screening efforts, was assayed against the commonly used luciferase reporter enzymes from the firefly, Photinus pyralis (FLuc) and marine sea pansy, Renilla reniformis (RLuc). A total of 22 compounds (∼6% of the library) were found to inhibit FLuc with 10 compounds showing potencies ≤1 µM. Only two compounds were found to inhibit RLuc, and these showed relatively weak potency values (∼10 µM). An inhibitor series of the VEGFR2/TIE2 protein kinase family containing either an aryl oxazole or benzimidazole-urea core illustrate the different structure activity relationship profiles FLuc inhibitors can display for kinase inhibitor chemotypes. Several FLuc inhibitors were broadly active toward the tyrosine kinase and CDK families. These data should aid in interpreting the results derived from screens employing the GSK PKIS in cell-based assays using the FLuc reporter. The study also underscores the general need for strategies such as the use of orthogonal reporters to identify kinase or non-kinase mediated cellular responses.

Concepts: Signal transduction, Enzyme, Protein kinase, Enzyme inhibitor, Inhibitor, Protein kinase inhibitor, Luciferase, Sea pansy

172

ω-3 fatty acid desaturase is a key enzyme for the biosynthesis of ω-3 polyunsaturated fatty acids via the oxidative desaturase/elongase pathways. Here we report the identification of three ω-3 desaturases from oomycetes, Pythium aphanidermatum, Phytophthora sojae, and Phytophthora ramorum. These new ω-3 desaturases share 55 % identity at the amino acid level with the known Δ-17 desaturase of Saprolegnia diclina, and about 31 % identity with the bifunctional Δ-12/Δ-15 desaturase of Fusarium monoliforme. The three enzymes were expressed in either wild-type or codon optimized form in an engineered arachidonic acid producing strain of Yarrowia lipolytica to study their activity and substrate specificity. All three were able to convert the ω-6 arachidonic acid to the ω-3 eicosapentanoic acid, with a substrate conversion efficiency of 54-65 %. These enzymes have a broad ω-6 fatty acid substrate spectrum, including both C18 and C20 ω-6 fatty acids although they prefer the C20 substrates, and have strong Δ-17 desaturase activity but weaker Δ-15 desaturase activity. Thus, they belong to the Δ-17 desaturase class. Unlike the previously identified bifunctional Δ-12/Δ-15 desaturase from F. monoliforme, they lack Δ-12 desaturase activity. The newly identified Δ-17 desaturases could use fatty acids in both acyl-CoA and phospholipid fraction as substrates. The identification of these Δ-17 desaturases provides a set of powerful new tools for genetic engineering of microbes and plants to produce ω-3 fatty acids, such as eicosapentanoic acid and docosahexanoic acid, at high levels.

Concepts: Amino acid, Nutrition, Fatty acid, Enzyme, Fatty acids, Essential fatty acid, Docosahexaenoic acid, Water moulds

172

Sulforaphane (SFN) is a dietary cancer preventive with incompletely characterized mechanism(s) of cancer prevention. Since prostaglandin E2 (PGE2) promotes cancer progression, we hypothesized that SFN may block PGE2 synthesis in cancer cells. We found that SFN indeed blocked PGE2 production in human A549 cancer cells not by inhibiting COX-2, but rather by suppressing the expression of microsomal prostaglandin E synthase (mPGES-1), the enzyme that directly synthesizes PGE2. We identified the Hypoxia Inducible Factor 1 alpha (HIF-1α) as the target of SFN-mediated mPGES-1 suppression. SFN suppressed HIF-1α protein expression and the presence of HIF-1α at the mPGES-1 promoter, resulting in reduced transcription of mPGES-1. Finally, SFN also reduced expression of mPGES-1 and PGE2 production in A549 xenograft tumors in mice. Together, these results point to the HIF-1α, mPGES-1 and PGE2 axis as a potential mediator of the anti-cancer effects of SFN, and illustrate the potential of SFN for therapeutic control of cancer and inflammation. Harmful side effects in patients taking agents that target the more upstream COX-2 enzyme render the downstream target mPGES-1 a significant target for anti-inflammatory therapy. Thus, SFN could prove to be an important therapeutic approach to both cancer and inflammation.

Concepts: Gene, Gene expression, Cancer, Oncology, Transcription, Enzyme, Cyclooxygenase, Prostaglandin

172

Cytochrome c oxidase is a member of the haem copper oxidase superfamily (HCO). HCOs function as the terminal enzymes in the respiratory chain of mitochondria and aerobic prokaryotes, coupling molecular oxygen reduction to transmembrane proton pumping. Integral to the enzyme’s function is the transfer of electrons from cytochrome c to the oxidase via a transient association of the two proteins. Electron entry and exit are proposed to occur from the same site on cytochrome c. Here we report the crystal structure of the caa3-type cytochrome oxidase from Thermus thermophilus, which has a covalently tethered cytochrome c domain. Crystals were grown in a bicontinuous mesophase using a synthetic short-chain monoacylglycerol as the hosting lipid. From the electron density map, at 2.36 Å resolution, a novel integral membrane subunit and a native glycoglycerophospholipid embedded in the complex were identified. Contrary to previous electron transfer mechanisms observed for soluble cytochrome c, the structure reveals the architecture of the electron transfer complex for the fused cupredoxin/cytochrome c domain, which implicates different sites on cytochrome c for electron entry and exit. Support for an alternative to the classical proton gate characteristic of this HCO class is presented.

Concepts: Electron, Bacteria, Adenosine triphosphate, Enzyme, Mitochondrion, Cellular respiration, Cytochrome c, Cytochrome c oxidase