SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Enzyme kinetics

169

BACKGROUND: Allostery is one of the most powerful and common ways of regulation of protein activity. However,for most allosteric proteins identified to date the mechanistic details of allosteric modulation are notyet well understood. Uncovering common mechanistic patterns underlying allostery would allow notonly a better academic understanding of the phenomena, but it would also streamline the design ofnovel therapeutic solutions. This relatively unexplored therapeutic potential and the putativeadvantages of allosteric drugs over classical active-site inhibitors fuel the attention allosteric-drugresearch is receiving at present. A first step to harness the regulatory potential and versatility ofallosteric sites, in the context of drug-discovery and design, would be to detect or predict theirpresence and location. In this article, we describe a simple computational approach, based on theeffect allosteric ligands exert on protein flexibility upon binding, to predict the existence and positionof allosteric sites on a given protein structure. RESULTS: By querying the literature and a recently available database of allosteric sites, we gathered 213allosteric proteins with structural information that we further filtered into a non-redundant set of 91proteins. We performed normal-mode analysis and observed significant changes in protein flexibilityupon allosteric-ligand binding in 70% of the cases. These results agree with the current view thatallosteric mechanisms are in many cases governed by changes in protein dynamics caused by ligandbinding. Furthermore, we implemented an approach that achieves 65% positive predictive value inidentifying allosteric sites within the set of predicted cavities of a protein (stricter parameters set,0.22 sensitivity), by combining the current analysis on dynamics with previous results on structuralconservation of allosteric sites. We also analyzed four biological examples in detail, revealing thatthis simple coarse-grained methodology is able to capture the effects triggered by allosteric ligandsalready described in the literature. CONCLUSIONS: We introduce a simple computational approach to predict the presence and position of allosteric sitesin a protein based on the analysis of changes in protein normal modes upon the binding of acoarse-grained ligand at predicted cavities. Its performance has been demonstrated using a newlycurated non-redundant set of 91 proteins with reported allosteric properties. The software developedin this work is available upon request from the authors.

Concepts: Enzyme kinetics, Hemoglobin, Allosteric regulation, Proteins, Scientific method, Protein, Protein structure

166

Abuse of the stimulant designer drug methylone (methylenedioxymethcathinone) has been documented in most parts of the world. As with many of the new designer drugs that continuously appear in the illicit drug market, little is known about the pharmacokinetics of methylone. Using in vitro studies, CYP2D6 was determined to be the primary enzyme that metabolizes methylone, with minor contributions from CYP1A2, CYP2B6, and CYP2C19. The major metabolite was identified as dihydroxymethcathinone, and the minor metabolites were N-hydroxy-methylone, nor-methylone, and dihydro-methylone. Measuring the formation of the major metabolite, biphasic Michaelis-Menten kinetic parameters were determined: Vmax,1 = 0.046 ± 0.005 (S.E.) nmol/min/mg protein, Km,1 = 19.0 ± 4.2 μM, Vmax,2 = 0.22 ± 0.04 nmol/min/mg protein, and Km,2 = 1953 ± 761 μM; the low-capacity and high-affinity contribution was assigned to the activity of CYP2D6. Additionally, a time-dependent loss of CYP2D6 activity was observed when the enzyme was preincubated with methylone, reaching a maximum rate of inactivation at high methylone concentrations, indicating that methylone is a mechanism-based inhibitor of CYP2D6. The inactivation parameters were determined to be KI = 15.1 ± 3.4 (S.E) μM and kinact = 0.075 ± 0.005 min(-1).

Concepts: Enzyme kinetics, Metabolism, Cytochrome P450, In vitro, Methamphetamine, MDMA, Designer drug, Methylone

29

Serotonin (5-hydroxytryptamine; 5-HT) signaling through the 5-HT(2C) receptor (5-HT(2C)R) is essential in normal physiology, whereas aberrant 5-HT(2C)R function is thought to contribute to the pathogenesis of multiple neural disorders. The 5-HT(2C)R interacts with specific protein partners, but the impact of such interactions on 5-HT(2C)R function is poorly understood. Here, we report convergent cellular and behavioral data that the interaction between the 5-HT(2C)R and protein phosphatase and tensin homolog (PTEN) serves as a regulatory mechanism to control 5-HT(2C)R-mediated biology but not that of the closely homologous 5-HT(2A)R. A peptide derived from the third intracellular loop of the human 5-HT(2C)R [3L4F (third loop, fourth fragment)] disrupted the association, allosterically augmented 5-HT(2C)R-mediated signaling in live cells, and acted as a positive allosteric modulator in rats in vivo. We identified the critical residues within an 8 aa fragment of the 3L4F peptide that maintained efficacy (within the picomolar range) in live cells similar to that of the 3L4F peptide. Last, molecular modeling identified key structural features and potential interaction sites of the active 3L4F peptides against PTEN. These compelling data demonstrate the specificity and importance of this protein assembly in cellular events and behaviors mediated by 5-HT(2C)R signaling and provide a chemical guidepost to the future development of drug-like peptide or small-molecule inhibitors as neuroprobes to study 5-HT(2C)R allostery and therapeutics for 5-HT(2C)R-mediated disorders.

Concepts: Enzyme kinetics, Allosteric regulation, Protein, Enzyme, Cell biology, Receptor, Ligand, Serotonin

28

Enzyme kinetic parameters are usually determined from initial rates nevertheless, laboratory instruments only measure substrate or product concentration versus reaction time (progress curves). To overcome this problem we present a methodology which uses integrated models based on Michaelis-Menten equation. The most severe practical limitation of progress curve analysis occurs when the enzyme shows a loss of activity under the chosen assay conditions. To avoid this problem it is possible to work with the same experimental points utilized for initial rates determination. This methodology is illustrated by the use of integrated kinetic equations with the well-known reaction catalyzed by alkaline phosphatase enzyme. In this work nonlinear regression was performed with the Solver supplement (Microsoft Office Excel). It is easy to work with and track graphically the convergence of SSE (sum of square errors). The diagnosis of enzyme inhibition was performed according to Akaike information criterion.

Concepts: Enzyme kinetics, Microsoft Excel, Enzyme, Microsoft, Spreadsheet, Microsoft Office, Microsoft Office 2007, Microsoft Office 2008 for Mac

28

A series of substrate analogues has been used to determine which chemical moieties of the substrate, phosphoenolpyruvate (PEP) contribute to the allosteric inhibition of rabbit muscle pyruvate kinase (M1-PYK) by phenylalanine. Replacing the carboxyl group of the substrate with a methyl alcohol, or removing the phosphate altogether, greatly reduces substrate affinity. However, removal of the carboxyl group is the only modification tested that removes the ability to allosterically reduce Phe binding. From this, it can be concluded that the carboxyl group of PEP is responsible for energetic coupling with Phe binding in the allosteric sites.

Concepts: Enzyme kinetics, Allosteric regulation, Alcohol, Adenosine triphosphate, Enzyme, Functional group, Ligand, Carboxylic acid

28

The phosphatidylinositolphosphate phosphatase PTEN is the second most frequently mutated protein in human tumors. Its membrane association, allosteric activation and membrane dissociation are poorly understood. We recently reported PTEN binding affinities to membranes of different compositions (Shenoy et al., 2012, PLoS ONE 7, e32591) and a preliminary investigation of the protein-membrane complex with neutron reflectometry (NR). Here we use NR to validate molecular dynamics (MD) simulations of the protein and study conformational differences of the protein in solution and on anionic membranes. NR shows that full-length PTEN binds to such membranes roughly in the conformation and orientation suggested by the crystal structure of a truncated PTEN protein, in contrast with a recently presented model which suggested that membrane binding depends critically on the SUMOylation of the CBR3 loop of PTEN’s C2 domain. Our MD simulations confirm that PTEN is peripherally bound to the bilayer surface and show slight differences of the protein structure in solution and in the membrane-bound state, where the protein body flattens against the bilayer surface. PTEN’s C2 domain binds phosphatidylserine (PS) tightly through its CBR3 loop, and its phosphatase domain also forms electrostatic interactions with PS. NR and MD results show consistently that PTEN’s unstructured, anionic C-terminal tail is repelled from the bilayer surface. In contrast, this tail is tightly tugged against the C2 domain in solution, partially obstructing the membrane-binding interface of the protein. Arresting the C-terminal tail in this conformation by phosphorylation may provide a control mechanism for PTEN’s membrane binding and activity.

Concepts: Enzyme kinetics, Protein, Protein structure, Cancer, Oncology, Cell membrane, Molecular dynamics, Tertiary structure

27

Ribonucleotide reductase (RNR) converts ribonucleotides to deoxyribonucleotides, a reaction that is essential for DNA biosynthesis and repair. This enzyme is responsible for reducing all four ribonucleotide substrates, with specificity regulated by the binding of an effector to a distal allosteric site. In all characterized RNRs, the binding of effector dATP alters the active site to select for pyrimidines over purines, whereas effectors dGTP and TTP select for substrates ADP and GDP, respectively. Here, we have determined structures of Escherichia coli class Ia RNR with all four substrate/specificity effector-pairs bound (CDP/dATP, UDP/dATP, ADP/dGTP, GDP/TTP) that reveal the conformational rearrangements responsible for this remarkable allostery. These structures delineate how RNR ‘reads’ the base of each effector and communicates substrate preference to the active site by forming differential hydrogen bonds, thereby maintaining the proper balance of deoxynucleotides in the cell.

Concepts: DNA, Enzyme kinetics, Allosteric regulation, Adenosine triphosphate, Enzyme, RNA, Escherichia coli, Purine

27

Dengue virus is the flavivirus that causes dengue fever, dengue hemorrhagic disease, and dengue shock syndrome, which are currently increasing in incidence worldwide. Dengue virus protease (NS2B-NS3pro) is essential for dengue virus infection and is thus a target of therapeutic interest. To date, attention has focused on developing active-site inhibitors of NS2B-NS3pro. The flat and charged nature of the NS2B-NS3pro active site may contribute to difficulties in developing inhibitors and suggests that a strategy of identifying allosteric sites may be useful. We report an approach that allowed us to scan the NS2B-NS3pro surface by cysteine mutagenesis and use cysteine reactive probes to identify regions of the protein that are susceptible to allosteric inhibition. This method identified a new allosteric site utilizing a circumscribed panel of just eight cysteine variants and only five cysteine reactive probes. The allosterically sensitive site is centered at Ala125, between the 120s loop and the 150s loop. The crystal structures of WT and modified NS2B-NS3pro demonstrate that the 120s loop is flexible. Our work suggests that binding at this site prevents a conformational rearrangement of the NS2B region of the protein, which is required for activation. Preventing this movement locks the protein into the open, inactive conformation, suggesting that this site may be useful in the future development of therapeutic allosteric inhibitors.

Concepts: Enzyme kinetics, Hemoglobin, Allosteric regulation, Ligand, Enzyme inhibitor, Fever, Dengue fever, Flaviviridae

27

Allostery is the most efficient means of regulating protein functions, ranging from the control of metabolic mechanisms to signal transduction pathways. Although allosteric regulation has been recognized for half a century, our knowledge is limited to the characteristics of allosteric proteins and the structural coupling of allosteric sites and modulators. In this paper, we present a comprehensive analysis of allosteric proteins that provides insight into the foundation of allosteric interactions by revealing a series of common features in the allosteric proteins. Allosteric proteins mainly appear in transferases, and phosphorylation is the most common type of modification found in allosteric proteins. Disorders related to allosteric proteins primarily comprise metabolic diseases and cancers. In general, allosteric proteins prefer to exist as monomers or even-numbered multimers. Greater stability and hydrophobicity are observed in allosteric proteins than in general proteins. Further analysis of the allosteric sites reveals a series of buried and compact pockets composed of significantly greater hydrophobic surface area than the corresponding orthosteric sites. The hydrophobicity of the allosteric sites plays a dominant role in the binding of allosteric modulators as observed in the analysis of 106 diverse allosteric protein-modulator pairs. These results may be of great significance in predicting which proteins are allosteric and in designing novel triggers to inhibit or activate proteins of interest.

Concepts: Enzyme kinetics, Allosteric regulation, Protein, Signal transduction, Enzyme, Series, Hormone, Sequence

27

We overview here our recent work on the thermodynamic view of allosteric regulation and communication. Starting from the geometry-based prediction of regulatory binding sites in a static structure, we move on to exploring a connection between ligand binding and the intrinsic dynamics of the protein molecule. We describe here two recently introduced measures, binding leverage and leverage coupling, which allow one to analyze the molecular basis of allosteric regulation. We discuss the advantages of these measures and show that they work universally in proteins of different sizes, oligomeric states, and functions. We also point to the problems that have to be solved before completing an atomic level description of allostery, and briefly discuss ideas for computational design of allosteric drugs.

Concepts: DNA, Enzyme kinetics, Hemoglobin, Allosteric regulation, Proteins, Protein, Chemistry, Ligand