Discover the most talked about and latest scientific content & concepts.

Concept: Enterobacteria


Enterotoxigenic Escherichia coli (ETEC) strains are the leading bacterial cause of diarrhea to humans and farm animals. These ETEC strains produce heat-labile toxin (LT) and/or heat-stable toxins that include type I (STa), type II (STb), and enteroaggregative heat-stable toxin 1 (EAST1). LT, STa, and STb (in pigs) are proven the virulence determinants in ETEC diarrhea. However, significance of EAST1 in ETEC-associated diarrheal has not been determined, even though EAST1 is highly prevalent among ETEC strains.

Concepts: Protein, Bacteria, Escherichia coli, Diarrhea, Toxin, Enterobacteria, Traveler's diarrhea, Enterotoxigenic Escherichia coli


Among 390 Escherichia coli and Klebsiella pneumoniae clinical isolates collected during 2014-2015 displaying colistin MIC values ≥4 μg/ml, 19 (4.9%) carried mcr-1 These isolates were all E. coli collected in ten countries, including the United States. Most isolates were susceptible to cephalosporins and were all susceptible to carbapenems, amikacin, tigecyline and ceftazidime-avibactam among other agents. Data from this global surveillance program expand the knowledge on the occurrence of mcr-1-carrying isolates.

Concepts: United States, Escherichia coli, Enterobacteriaceae, Escherichia, Proteobacteria, Beta-lactamase, Enterobacteria, Cephalosporin


A retrospective study was conducted at a Taiwanese medical center to characterize bloodstream infections caused by IMP-8 metallo-β-lactamase (MBL)-producing Enterobacteriaceae isolates and to assess the need for laboratory detection of IMP producers. We analyzed 37 patients infected with IMP-8 producers (two Escherichia coli, nine Klebsiella pneumoniae, 25 Enterobacter cloacae, and one Citrobacter freundii) and 107 patients infected with non-IMP-8 producers (eight E. coli, 26 K. pneumoniae, 70 E. cloacae, and three C. freundii) that were interpreted as carbapenem-nonsusceptible based on the updated Clinical and Laboratory Standards Institute (CLSI) 2010 guidelines. Only 18 (48.6 %) of the IMP-8 producers were regarded as potential carbapenemase producers based on the CLSI 2012 guidelines. The production of extended-spectrum β-lactamases (ESBLs) was more common in the MBL group (73.0 %) than in the non-MBL group (41.1 %). There were no significant differences in carbapenem susceptibilities, clinical characteristics, carbapenem use for empirical and definitive treatment, and mortality rates between the two groups. Eighteen IMP-8 producers could be deemed as resistant to all carbapenems [minimum inhibitory concentration (MIC) of any carbapenem ≥2 μg/mL]; patients with these isolates had a lower, but non-significant, 28-day mortality rate (27.8 %) than patients infected with non-MBL producers having similar carbapenem MICs (39.0 %) (p = 0.41). A multivariate analysis revealed severity of acute illness as the single independent variable associated with both 7-day and 28-day mortality rates (p < 0.01) for infections caused by Enterobacteriaceae with decreased carbapenem susceptibilities. Our findings suggest that the clinical detection of IMP-producing Enterobacteriaceae is not required even when the "old" CLSI criteria are used.

Concepts: Escherichia coli, Phage therapy, Enterobacteriaceae, Escherichia, Gram negative bacteria, Enterobacteria, Klebsiella pneumoniae, Klebsiella


Contact with animals and their environment is an important, and often preventable, route of transmission for enteric pathogens. This study estimated the annual burden of illness attributable to animal contact for 7 groups of pathogens: Campylobacter species, Cryptosporidium species, Shiga toxin-producing Escherichia coli (STEC) O157, STEC non-O157, Listeria monocytogenes, nontyphoidal Salmonella species, and Yersinia enterocolitica.

Concepts: Microbiology, United States, Escherichia coli, Enterobacteriaceae, Listeria monocytogenes, Diarrhea, Foodborne illness, Enterobacteria


Abstract New compounds based on the indole moiety were synthesized via the reaction of indole-3-carbinal 1 with different nucleophiles such as 6-aryl-[4-(2-methoxybenzyl)pyridazin-3-yl] hydrazones 2a-c, benzidine, 3,3'-dimethoxybenzidine 4a,b and 2,6-diaminopyridine 6 to afford hydrazine derivatives 3a-c and three different classes of bis-Schiff bases. The structures of the new compounds were elucidated on the basis of their FTIR, (1)H NMR, (13)C NMR spectral data, GC/MS and elemental analysis. The antimicrobial activity of the new compounds was evaluated using a broth dilution technique in terms of minimal inhibitory concentration (MIC) against four pathogenic bacteria and two pathogenic fungi strains. Compound 14b showed excellent activity against Escherichia coli and Klebsiella pneumoniae. Some of the prepared compounds were tested for anti-cancer activity against human cell lines HCT116 (colon), MCF7 (breast) and HELA (cervix). From the results of the in vitro assays, compounds 3a,b, and 18a,c presented promising anti-cancer activity.

Concepts: Bacteria, Microbiology, Pneumonia, Escherichia coli, NMR spectroscopy, Cell culture, Enterobacteriaceae, Enterobacteria


OmpK35 and OmpK36 are the major outer membrane porins of Klebsiella pneumoniae. We aimed to study the effect of combined porin loss and production of extended-spectrum β-lactamases (ESBLs) on imipenem susceptibility among K. pneumoniae clinical isolates.

Concepts: Enterobacteriaceae, Major, Enterobacteria, Egypt, Klebsiella pneumoniae, Klebsiella, Klebsiella oxytoca, Porin


Clinical bacterial pathogens front a major challenge for the clinical researchers and physicians. In particular microbial pathogens like Escherichia coli, Shigella flexneri, Klebsiella pneumonia and Salmonella enterica are apparelled with systemic machineries to bring down the human immune system as well as proliferate dramatically in a short period which in turn cause a pronounced ailment to the human health. In vitro evaluation of four purified compounds isolated from rhizosphere bacterium Exiguobacterium mexicanum tested against clinical pathogens mentioned above by disc diffusion method showed the two compounds viz., 3,6,18-trione, 9,10-dihydro-12'-hydroxyl-2methyl-5-(phenyl methyl) (5'-alpha, 10-alpha)-dihydroergotamine (C3) and dipropyl - S-propyl ester (C4) exhibit antibacterial property against all the tested pathogens. Among the four clinical pathogens tested, compound C3 has shown higher zone of inhibition against S. enterica with 17±0mm, followed by S. flexneri with 16.5±0.7mm, E. coli with 15±0mm and K. pneumoniae with 14±0mm, respectively. The compound C4 has shown higher antimicrobial activity against S. enterica with 21.5±0.7mm zone of inhibition, followed by S. flexneri with 19.5±0.7mm, E. coli with 17±0mm and K. pneumoniae with 16±0mm, these two compounds were found to be safer when subjected to rat haematological and enzymatic analysis.

Concepts: Immune system, Bacteria, Microbiology, Pneumonia, Escherichia coli, Enterobacteriaceae, Proteobacteria, Enterobacteria



Injectisomes are multi-protein transmembrane machines allowing pathogenic bacteria to inject effector proteins into eukaryotic host cells, a process called type III secretion. Here we present the first three-dimensional structure of Yersinia enterocolitica and Shigella flexneri injectisomes in situ and the first structural analysis of the Yersinia injectisome. Unexpectedly, basal bodies of injectisomes inside the bacterial cells showed length variations of 20%. The in situ structures of the Y. enterocolitica and S. flexneri injectisomes had similar dimensions and were significantly longer than the isolated structures of related injectisomes. The crystal structure of the inner membrane injectisome component YscD appeared elongated compared to a homologous protein, and molecular dynamics simulations documented its elongation elasticity. The ring-shaped secretin YscC at the outer membrane was stretched by 30-40% in situ, compared to its isolated liposome-embedded conformation. We suggest that elasticity is critical for some two-membrane spanning protein complexes to cope with variations in the intermembrane distance. DOI:

Concepts: DNA, Protein, Cell, Bacteria, Microbiology, Cell membrane, Enterobacteria, Yersinia enterocolitica


Multidrug-resistant bacterial infections are an ever-growing threat because of the shrinking arsenal of efficacious antibiotics. Metal nanoparticles can induce cell death, yet the toxicity effect is typically nonspecific. Here, we show that photoexcited quantum dots (QDs) can kill a wide range of multidrug-resistant bacterial clinical isolates, including methicillin-resistant Staphylococcus aureus, carbapenem-resistant Escherichia coli, and extended-spectrum β-lactamase-producing Klebsiella pneumoniae and Salmonella typhimurium. The killing effect is independent of material and controlled by the redox potentials of the photogenerated charge carriers, which selectively alter the cellular redox state. We also show that the QDs can be tailored to kill 92% of bacterial cells in a monoculture, and in a co-culture of E. coli and HEK 293T cells, while leaving the mammalian cells intact, or to increase bacterial proliferation. Photoexcited QDs could be used in the study of the effect of redox states on living systems, and lead to clinical phototherapy for the treatment of infections.

Concepts: Bacteria, Pneumonia, Staphylococcus aureus, Antibiotic resistance, Escherichia coli, Enterobacteriaceae, Proteobacteria, Enterobacteria