Discover the most talked about and latest scientific content & concepts.

Concept: Energy


Peoples' attempts to lose weight by low calorie diets often result in weight gain because of over-compensatory overeating during lapses. Animals usually respond to a change in food availability by adjusting their foraging effort and altering how much energy reserves they store. But in many situations the long-term availability of food is uncertain, so animals may attempt to estimate it to decide the appropriate level of fat storage.

Concepts: Nutrition, Energy, Physics, Obesity, Mass, Heat, Carbohydrate, Dieting


Body size and metabolic rate both fundamentally constrain how species interact with their environment, and hence ultimately affect their niche. While many mechanisms leading to these constraints have been explored, their effects on the resolution at which temporal information is perceived have been largely overlooked. The visual system acts as a gateway to the dynamic environment and the relative resolution at which organisms are able to acquire and process visual information is likely to restrict their ability to interact with events around them. As both smaller size and higher metabolic rates should facilitate rapid behavioural responses, we hypothesized that these traits would favour perception of temporal change over finer timescales. Using critical flicker fusion frequency, the lowest frequency of flashing at which a flickering light source is perceived as constant, as a measure of the maximum rate of temporal information processing in the visual system, we carried out a phylogenetic comparative analysis of a wide range of vertebrates that supported this hypothesis. Our results have implications for the evolution of signalling systems and predator-prey interactions, and, combined with the strong influence that both body mass and metabolism have on a species' ecological niche, suggest that time perception may constitute an important and overlooked dimension of niche differentiation.

Concepts: Psychology, Evolution, Metabolism, Energy, Organism, Ecology, Information, Niche differentiation


A gender-based disparity in physical activity (PA) among youth, whereby girls are less active than boys is a persistent finding in the literature. A greater understanding of the mechanisms underlying this difference has potential to guide PA intervention strategies.

Concepts: Energy


Protein timing is a popular dietary strategy designed to optimize the adaptive response to exercise. The strategy involves consuming protein in and around a training session in an effort to facilitate muscular repair and remodeling, and thereby enhance post-exercise strength- and hypertrophy-related adaptations. Despite the apparent biological plausibility of the strategy, however, the effectiveness of protein timing in chronic training studies has been decidedly mixed. The purpose of this paper therefore was to conduct a multi-level meta-regression of randomized controlled trials to determine whether protein timing is a viable strategy for enhancing post-exercise muscular adaptations. The strength analysis comprised 478 subjects and 96 ESs, nested within 41 treatment or control groups and 20 studies. The hypertrophy analysis comprised 525 subjects and 132 ESs, nested with 47 treatment or control groups and 23 studies. A simple pooled analysis of protein timing without controlling for covariates showed a small to moderate effect on muscle hypertrophy with no significant effect found on muscle strength. In the full meta-regression model controlling for all covariates, however, no significant differences were found between treatment and control for strength or hypertrophy. The reduced model was not significantly different from the full model for either strength or hypertrophy. With respect to hypertrophy, total protein intake was the strongest predictor of ES magnitude. These results refute the commonly held belief that the timing of protein intake in and around a training session is critical to muscular adaptations and indicate that consuming adequate protein in combination with resistance exercise is the key factor for maximizing muscle protein accretion.

Concepts: Metabolism, Energy, Muscle, Physical exercise, Actin, Tissues, Muscular system, Exercise physiology


It has long been suspected that sleep is important for regulating body temperature and metabolic-rate. Hibernation, a state of acute hypothermia and reduced metabolic-rate, offers a promising system for investigating those relationships. Prior studies in hibernating ground squirrels report that, although sleep occurs during hibernation, it manifests only as non-REM sleep, and only at relatively high temperatures. In our study, we report data on sleep during hibernation in a lemuriform primate, Cheirogaleus medius. As the only primate known to experience prolonged periods of hibernation and as an inhabitant of more temperate climates than ground squirrels, this animal serves as an alternative model for exploring sleep temperature/metabolism relationships that may be uniquely relevant to understanding human physiology.

Concepts: Energy, Physiology, Climate, Temperature, Heat transfer, Cryobiology, Hibernation, Fat-tailed Dwarf Lemur


Solar energy is potentially the largest source of renewable energy at our disposal, but significant advances are required to make photovoltaic technologies economically viable and, from a life-cycle perspective, environmentally friendly, and consequently scalable. Cellulose nanomaterials are emerging high-value nanoparticles extracted from plants that are abundant, renewable, and sustainable. Here, we report on the first demonstration of efficient polymer solar cells fabricated on optically transparent cellulose nanocrystal (CNC) substrates. The solar cells fabricated on the CNC substrates display good rectification in the dark and reach a power conversion efficiency of 2.7%. In addition, we demonstrate that these solar cells can be easily separated and recycled into their major components using low-energy processes at room temperature, opening the door for a truly recyclable solar cell technology. Efficient and easily recyclable organic solar cells on CNC substrates are expected to be an attractive technology for sustainable, scalable, and environmentally-friendly energy production.

Concepts: Energy, Quantum dot, Solar cell, Photovoltaics, Organic solar cell, Energy conversion, Energy conversion efficiency, Renewable energy


A water drop on a superhydrophobic surface that is pinned by wire loops can be reproducibly cut without formation of satellite droplets. Drops placed on low-density polyethylene surfaces and Teflon-coated glass slides were cut with superhydrophobic knives of low-density polyethylene and treated copper or zinc sheets, respectively. Distortion of drop shape by the superhydrophobic knife enables a clean break. The driving force for droplet formation arises from the lower surface free energy for two separate drops, and it is modeled as a 2-D system. An estimate of the free energy change serves to guide when droplets will form based on the variation of drop volume, loop spacing and knife depth. Combining the cutting process with an electrofocusing driving force could enable a reproducible biomolecular separation without troubling satellite drop formation.

Concepts: Energy, Liquid, Surface tension, Drop, Gibbs free energy, Rainbow, Liquids, Globule


A dietary protein intake higher than the Recommended Dietary Allowance during an energy deficit helps to preserve lean body mass (LBM), particularly when combined with exercise.

Concepts: Protein, Metabolism, Nutrition, Energy, Obesity, Muscle, Mass, Diet


Recent advances in nanophotonic light trapping open up the new gateway to enhance the absorption of solar energy beyond the so called Yablonovitch Limit. It addresses the urgent needs in developing low cost thin-film solar photovoltaic technologies. However, current design strategy mainly relies on the parametric approach that is subject to the predefined topological design concepts based on physical intuition. Incapable of dealing with the topological variation severely constrains the design of optimal light trapping structure. Inspired by natural evolution process, here we report a design framework driven by topology optimization based on genetic algorithms to achieve a highly efficient light trapping structure. It has been demonstrated that the optimal light trapping structures obtained in this study exhibit more than 3-fold increase over the Yablonovitch Limit with the broadband absorption efficiency of 48.1%, beyond the reach of intuitive designs.

Concepts: Evolution, Energy, Topology, Solar cell, Photovoltaics, Design, Solar energy, Solar thermal energy


Although studies have investigated the effects of hydration on performance measures, few studies have investigated how the temperature of the ingested liquid affects performance and core temperature during an exercise session. The hypothesis of the present study was that cold water would improve thermoregulation and performance as measured by bench repetitions to fatigue, broad jump for force and power and total time to exhaustion for cardiovascular fitness

Concepts: Time, Energy, Effect, Temperature, Influenza, Affect, Exercise physiology, Common cold