Discover the most talked about and latest scientific content & concepts.

Concept: Energy density


Improving one property without sacrificing others is challenging for lithium-ion batteries due to the trade-off nature among key parameters. Here we report a chemical vapor deposition process to grow a graphene-silica assembly, called a graphene ball. Its hierarchical three-dimensional structure with the silicon oxide nanoparticle center allows even 1 wt% graphene ball to be uniformly coated onto a nickel-rich layered cathode via scalable Nobilta milling. The graphene-ball coating improves cycle life and fast charging capability by suppressing detrimental side reactions and providing efficient conductive pathways. The graphene ball itself also serves as an anode material with a high specific capacity of 716.2 mAh g(-1). A full-cell incorporating graphene balls increases the volumetric energy density by 27.6% compared to a control cell without graphene balls, showing the possibility of achieving 800 Wh L(-1) in a commercial cell setting, along with a high cyclability of 78.6% capacity retention after 500 cycles at 5C and 60 °C.

Concepts: Density, Battery, Rechargeable battery, Lithium-ion battery, Lithium, Nanowire battery, Energy density, Nickel-cadmium battery


Given the current prevalence of both cigarette use and obesity in the United States, identification of dietary patterns that reduce mortality risk are important public health priorities. The objective of the present study was to evaluate the correlation between cigarette use and dietary energy density, a marker for diet quality, in a population of current smokers, former smokers, and never smokers.

Concepts: Epidemiology, Nutrition, Death, Obesity, United States, United Kingdom, Poverty in the United States, Energy density


The identification of beverages that promote longer-term fluid retention and maintenance of fluid balance is of real clinical and practical benefit in situations in which free access to fluids is limited or when frequent breaks for urination are not desirable. The postingestion diuretic response is likely to be influenced by several beverage characteristics, including the volume ingested, energy density, electrolyte content, and the presence of diuretic agents.

Concepts: Energy, Fundamental physics concepts, Matter, Density, Water, Liquid, Energy density


Solar energy storage is an emerging technology which can promote the solar energy as the primary source of electricity. Recent development of laser scribed graphene electrodes exhibiting a high electrical conductivity have enabled a green technology platform for supercapacitor-based energy storage, resulting in cost-effective, environment-friendly features, and consequent readiness for on-chip integration. Due to the limitation of the ion-accessible active porous surface area, the energy densities of these supercapacitors are restricted below ~3 × 10(-3) Whcm(-3). In this paper, we demonstrate a new design of biomimetic laser scribed graphene electrodes for solar energy storage, which embraces the structure of Fern leaves characterized by the geometric family of space filling curves of fractals. This new conceptual design removes the limit of the conventional planar supercapacitors by significantly increasing the ratio of active surface area to volume of the new electrodes and reducing the electrolyte ionic path. The attained energy density is thus significantly increased to ~10(-1) Whcm(-3)- more than 30 times higher than that achievable by the planar electrodes with ~95% coulombic efficiency of the solar energy storage. The energy storages with these novel electrodes open the prospects of efficient self-powered and solar-powered wearable, flexible and portable applications.

Concepts: Density, Volume, Sun, Electrochemistry, Integral, Solar energy, Energy density, Energy storage


Interventions targeting portion size and energy density of food and beverage products have been identified as a promising approach for obesity prevention. This study modelled the potential cost-effectiveness of: a package size cap on single-serve sugar sweetened beverages (SSBs) >375 mL ( package size cap ), and product reformulation to reduce energy content of packaged SSBs ( energy reduction ). The cost-effectiveness of each intervention was modelled for the 2010 Australia population using a multi-state life table Markov model with a lifetime time horizon. Long-term health outcomes were modelled from calculated changes in body mass index to their impact on Health-Adjusted Life Years (HALYs). Intervention costs were estimated from a limited societal perspective. Cost and health outcomes were discounted at 3%. Total intervention costs estimated in AUD 2010 were AUD 210 million. Both interventions resulted in reduced mean body weight ( package size cap : 0.12 kg; energy reduction : 0.23 kg); and HALYs gained ( package size cap : 73,883; energy reduction : 144,621). Cost offsets were estimated at AUD 750.8 million ( package size cap ) and AUD 1.4 billion ( energy reduction ). Cost-effectiveness analyses showed that both interventions were “dominant”, and likely to result in long term cost savings and health benefits. A package size cap and kJ reduction of SSBs are likely to offer excellent “value for money” as obesity prevention measures in Australia.

Concepts: Energy, Obesity, Mass, Body mass index, Body shape, Joule, Body weight, Energy density


There is increasing evidence that the portion sizes of many foods have increased and in a laboratory at least this increases the amount eaten. The conclusions are, however, limited by the complexity of the phenomenon. There is a need to consider meals freely chosen over a prolonged period when a range of foods of different energy densities are available. A range of factors will influence the size of the portion size chosen: amongst others packaging, labeling, advertising, and the unit size rather than portion size of the food item. The way portion size interacts with the multitude of factors that determine food intake needs to be established. In particular, the role of portion size on energy intake should be examined as many confounding variables exist and we must be clear that it is portion size that is the major problem. If the approach is to make a practical contribution, then methods of changing portion sizes will need to be developed. This may prove to be a problem in a free market, as it is to be expected that customers will resist the introduction of smaller portion sizes, given that value for money is an important motivator.

Concepts: Nutrition, Eating, Food, Meal, Energy density


Porous yet densely packed carbon electrodes with high ion-accessible surface area and low ion transport resistance are crucial to the realization of high-density electrochemical capacitive energy storage but have proved to be very challenging to produce. Taking advantage of chemically converted graphene’s intrinsic microcorrugated two-dimensional configuration and self-assembly behavior, we show that such materials can be readily formed by capillary compression of adaptive graphene gel films in the presence of a nonvolatile liquid electrolyte. This simple soft approach enables subnanometer scale integration of graphene sheets with electrolytes to form highly compact carbon electrodes with a continuous ion transport network. Electrochemical capacitors based on the resulting films can obtain volumetric energy densities approaching 60 watt-hours per liter.

Concepts: Volume, Water, Electrochemistry, Physical chemistry, Battery, Electrolyte, Capacitor, Energy density


Regulating the energy density of food could be used as a novel approach for successful body weight reduction in clinical practice. The aim of this study was to conduct a systemic review of the literature on the relationship between food energy density and body weight changes in obese adults to obtain solid evidence supporting this approach. The search process was based on the selection of publications in the English language listed in public databases. A meta-analysis was performed to combine individual study results. Thirteen experimental and observational studies were identified and included in the final analysis. The analyzed populations consist of 3628 individuals aged 18 to 66 years. The studies varied greatly in terms of study populations, study design and applied dietary approaches. The meta-analysis revealed a significant association between low energy density foods and body weight reduction, i.e., -0.53 kg when low energy density foods were eaten (95% CI: -0.88, -0.19). In conclusions, this study adds evidence which supports the energy density of food as a simple but effective measure to manage weight in the obese with the aim of weight reduction.

Concepts: Scientific method, Clinical trial, Nutrition, Obesity, Mass, Carbohydrate, Kilogram, Energy density


The idea that food intake is motivated by (or in anticipation of) ‘hunger’ arising from energy depletion is apparent in both public and scientific discourse on eating behaviour. In contrast, our thesis is that eating is largely unrelated to short-term energy depletion. Energy requirements meal-to-meal are trivial compared with total body energy stores, so energy supply to the body’s tissues is maintained if a meal or even several meals are missed. Complex and exquisite metabolic machinery ensures that this happens, but metabolic regulation is only loosely coupled with the control of energy intake. Instead, food intake needs to be controlled because the limited capacity of the gut means that processing a meal presents a significant physiological challenge and potentially hinders other activities. We illustrate the relationship between energy (food) intake and energy expenditure with a simple analogy in which: (1) water in a bathtub represents body energy content, (2) water in a saucepan represents food in the gut, and (3) the bathtub is filled via the saucepan. Furthermore, (4) it takes hours to process and pass the full energy (macronutrient) content of the saucepan to the bathtub, and (5) both the saucepan and bathtub resist overfilling, representing negative feedbacks on appetite (desire to eat). This model is consistent with the observations that appetite is reduced acutely by energy intake (a meal added to the limited capacity of the saucepan/gut), but not by an increase in acute energy expenditure (energy removed from the large store of energy in the bathtub/body). The existence of a relatively weak but chronic negative feedback effect on appetite proportional to body fatness is supported by observations on the dynamics of energy intake and weight gain in rat dietary obesity. (We use the term ‘appetite’ here because ‘hunger’ implies energy depletion.) In our model, appetite is motivated by the accessibility of food and the anticipated and experienced pleasure of eating it. The latter, which is similar to food reward, is determined primarily by the state of the emptiness of the gut and food liking related to the food’s sensory qualities and macronutrient value and the individual’s dietary history. Importantly, energy density adds value because energy dense foods are less satiating kJ for kJ and satiation limits further intake. That is, energy dense foods promote energy intake by virtue (1) of being more attractive and (2) having low satiating capacity kJ for kJ, and (1) is partly a consequence of (2). Energy storage is adapted to feast and famine and that includes unevenness over time of the costs of obtaining and ingesting food compared with engaging in other activities. However, in very low-cost food environments with energy dense foods readily available, risk of obesity is high. This risk can be and is mitigated by dietary restraint, which in its simplest form could mean missing the occasional meal. Another strategy we discuss is the energy dilution achieved by replacing some sugar in the diet with low-calorie sweeteners. Perhaps as or more significant, though, is that belief in short-term energy balancing (the energy depletion model) may undermine attempts to eat less. Therefore, correcting narratives of eating to be consistent with biological reality could also assist with weight control.

Concepts: Nutrition, Energy, Obesity, Eating, Food, Appetite, Energy density, Food and drink


The Endangered Species Act requires actions that improve the passage and survival rates for migrating salmonoids and other fish species that sustain injury and mortality when passing through hydroelectric dams. To develop a low-cost revolutionary acoustic transmitter that may be injected instead of surgically implanted into the fish, one major challenge that needs to be addressed is the micro-battery power source. This work focuses on the design and fabrication of micro-batteries for injectable fish tags. High pulse current and required service life have both been achieved as well as doubling the gravimetric energy density of the battery. The newly designed micro-batteries have intrinsically low impedance, leading to significantly improved electrochemical performances at low temperatures as compared with commercial SR416 batteries. Successful field trial by using the micro-battery powered transmitters injected into fish has been demonstrated, providing an exemplary model of transferring fundamental research into practical devices with controlled qualities.

Concepts: Biodiversity, Energy, Density, Endangered species, Salmon, Energy density, Hydroelectricity, Endangered Species Act