Discover the most talked about and latest scientific content & concepts.

Concept: Endomembrane system


The Golgi apparatus has attracted intense attentions due to its fascinating morphology and vital role as the pivot of cellular secretory pathway since its discovery. However, its complex structure at the molecular level remains elusive due to limited approaches. In this study, the structure of Golgi apparatus, including the Golgi stack, cisternal structure, relevant tubules and vesicles, were directly visualized by high-resolution atomic force microscope. We imaged both sides of Golgi apparatus membranes and revealed that the outer leaflet of Golgi membranes is relatively smooth while the inner membrane leaflet is rough and covered by dense proteins. With the treatment of methyl-β-cyclodextrin and Triton X-100, we confirmed the existence of lipid rafts in Golgi apparatus membrane, which are mostly in the size of 20 nm -200 nm and appear irregular in shape. Our results may be of significance to reveal the structure-function relationship of the Golgi complex and pave the way for visualizing the endomembrane system in mammalian cells at the molecular level.

Concepts: Cell, Cell membrane, Golgi apparatus, Organelle, Endoplasmic reticulum, Protein targeting, Endomembrane system, Secretory pathway


As the most abundant biopolymer on Earth, cellulose is a key structural component of the plant cell wall. Cellulose is produced at the plasma membrane by cellulose synthase (CesA) complexes (CSCs), which are assembled in the endomembrane system and trafficked to the plasma membrane. While several proteins that affect CesA activity have been identified, components that regulate CSC assembly and trafficking remain unknown. Here we show that STELLO1 and 2 are Golgi-localized proteins that can interact with CesAs and control cellulose quantity. In the absence of STELLO function, the spatial distribution within the Golgi, secretion and activity of the CSCs are impaired indicating a central role of the STELLO proteins in CSC assembly. Point mutations in the predicted catalytic domains of the STELLO proteins indicate that they are glycosyltransferases facing the Golgi lumen. Hence, we have uncovered proteins that regulate CSC assembly in the plant Golgi apparatus.

Concepts: Cell, Bacteria, Cell membrane, Golgi apparatus, Endoplasmic reticulum, Cell wall, Cellulose, Endomembrane system


Eukaryotic cells are defined by compartments through which the trafficking of macromolecules is mediated by large complexes, such as the nuclear pore, transport vesicles and intraflagellar transport. The assembly and maintenance of these complexes is facilitated by endomembrane coatomers, long suspected to be divergently related on the basis of structural and more recently phylogenomic analysis. By performing supervised walks in sequence space across coatomer superfamilies, we uncover subtle sequence patterns that have remained elusive to date, ultimately unifying eukaryotic coatomers by divergent evolution. The conserved residues shared by 3,502 endomembrane coatomer components are mapped onto the solenoid superhelix of nucleoporin and COPII protein structures, thus determining the invariant elements of coatomer architecture. This ancient structural motif can be considered as a universal signature connecting eukaryotic coatomers involved in multiple cellular processes across cell physiology and human disease.

Concepts: DNA, Cell nucleus, Cell, Eukaryote, Chromosome, Endoplasmic reticulum, Cell biology, Endomembrane system


GTP-ases of the Rab family (about 70 in human) are key regulators of intracellular transport and membrane trafficking in eukaryotic cells. Remarkably, almost one third associate with membranes of the Golgi complex and TGN (trans-Golgi network). Through interactions with a variety of effectors that include molecular motors, tethering complexes, scaffolding proteins and lipid kinases, they play an important role in maintaining Golgi architecture.

Concepts: DNA, Cell, Cell membrane, Golgi apparatus, Organelle, Endoplasmic reticulum, Lysosome, Endomembrane system


Approximately one-third of all eukaryotic proteins are delivered to their destination by trafficking within the endomembrane system. Such cargo proteins are incorporated into forming membrane vesicles on donor compartments and delivered to acceptor compartments by vesicle fusion. How cargo proteins are sorted into forming vesicles is still largely unknown. Here we review the roles of small GTPases of the ARF/SAR1 family, their regulators designated ARF guanine-nucleotide exchange factors (ARF-GEFs) and ARF GTPase-activating proteins (ARF-GAPs) as well as coat protein complexes during membrane vesicle formation. Although conserved across eukaryotes, these four functional groups of proteins display plant-specific modifications in composition, structure and function.

Concepts: Cell, Archaea, Eukaryote, Cytosol, Endoplasmic reticulum, Prokaryote, Membrane biology, Endomembrane system


The small GTPase Arf4 and the Arf GTPase activating protein (GAP) ASAP1 cooperatively sequester sensory receptor cargo into transport carriers targeted to primary cilia, but the input that drives Arf4 activation in this process remains unknown. Here, we show that during the carrier biogenesis from the photoreceptor Golgi/trans-Golgi network (TGN) a functional complex is formed between Arf4, the Arf guanine nucleotide exchange factor (GEF) GBF1 and the light-sensing receptor, rhodopsin. Rhodopsin and Arf4 bind the regulatory N-terminal DCB-HUS domain of GBF1. The complex is sensitive to Golgicide A (GCA), a selective inhibitor of GBF1 that accordingly blocks rhodopsin delivery to the cilia, without disrupting the photoreceptor Golgi. The emergence of newly synthesized rhodopsin in the endomembrane system is essential for GBF1-Arf4 complex formation in vivo. Notably, GBF1 interacts with the Arf GAP ASAP1 in a GCA-resistant manner. Our findings implicate that converging signals on GBF1 from the influx of cargo into the Golgi/TGN and the feedback from Arf4, combined with an input from ASAP1, control Arf4 activation during sensory membrane trafficking to primary cilia.

Concepts: Proteins, Protein, Cell, Signal transduction, Golgi apparatus, Guanine nucleotide exchange factor, Endomembrane system, Sensory receptors


The vacuole is a prominent organelle that is essential for plant viability. The vacuole size, and its role in ion homeostasis, protein degradation and storage, place significant demands for trafficking of vacuolar cargo along the endomembrane system. Recent studies indicate that sorting of vacuolar cargo initiates at the ER and Golgi, but not the trans-Golgi network/early endosome, as previously thought. Furthermore, maturation of the trans-Golgi network into pre-vacuolar compartments seems to contribute to a major route for plant vacuolar traffic that works by bulk flow and ends with membrane fusion between the pre-vacuolar compartment and the tonoplast. Here we summarize recent evidence that indicates conserved and plant-specific mechanisms involved in sorting and trafficking of proteins to this major organelle.

Concepts: Cell, Cell membrane, Golgi apparatus, Organelle, Endoplasmic reticulum, Organelles, Vacuole, Endomembrane system


Nuclear pore complexes (NPCs) are the sole gateway between the cytoplasm and the nucleus serving both as stringent permeability barrier and active transporters between the two compartments of eukaryotic cells. Complete mechanistic understanding of how these two functions are implemented within one and the same transport machine has not been attained to date. Based on several lines of structural evidence, a hypothesis was proposed postulating that NPCs shares common evolutionary origin with other intracellular systems responsible for active management of endomembranes. In this review we attempt to summarize the evidence supporting this hypothesis. The structural data obtained so far is evaluated and supplemented with the analysis of the functional evidence. Based on this analysis, a model is proposed which integrates the knowledge from the field of NPC function with that obtained from other endomembrane management systems in an attempt to shed new light on the mechanism of the NPC active transport.

Concepts: DNA, Cell nucleus, Archaea, Eukaryote, Cytoplasm, Nuclear pore, Nuclear envelope, Endomembrane system


The flat Golgi cisterna is a highly conserved feature of eukaryotic cells, but how is this morphology achieved and is it related to its function in cargo sorting and export? A physical model of cisterna morphology led us to propose that sphingomyelin (SM) metabolism at the trans-Golgi membranes in mammalian cells essentially controls the structural features of a Golgi cisterna by regulating its association to curvature-generating proteins. An experimental test of this hypothesis revealed that affecting SM homeostasis converted flat cisternae into highly curled membranes with a concomitant dissociation of membrane curvature-generating proteins. These data lend support to our hypothesis that SM metabolism controls the structural organization of a Golgi cisterna. Together with our previously presented role of SM in controlling the location of proteins involved in glycosylation and vesicle formation, our data reveal the significance of SM metabolism in the structural organization and function of Golgi cisternae.

Concepts: Cell, Organism, Cell membrane, Golgi apparatus, Organelle, Endoplasmic reticulum, Lysosome, Endomembrane system


Selective nuclear import in eukaryotic cells involves sequential interactions between nuclear import receptors and phenylalanine-glycine (FG)-repeat nucleoporins. Traditionally, binding of cargoes to import receptors is perceived as a nuclear pore complex independent event, while interactions between import complexes and nucleoporins are thought to take place at the nuclear pores. However, studies have shown that nucleoporins are mobile and not static within the nuclear pores, suggesting that they may become engaged in nuclear import prior to nuclear pore entry. Here we have studied post-mitotic nuclear import of the tumor suppressor protein PML. Since this protein forms nuclear compartments called PML bodies that persist during mitosis, the assembly of putative PML import complexes can be visualized on the surface of these protein aggregates as the cell progress from an import inactive state in mitosis to an import active state in G1. We show that these post-mitotic cytoplasmic PML bodies incorporate a multitude of peripheral nucleoporins, but not scaffold or nuclear basket nucleoporins, in a manner that depends on FG-repeats, the KPNB1 import receptor, and the PML nuclear localization signal. The study suggests that nucleoporins have the ability to target certain nuclear cargo proteins in a nuclear pore-uncoupled state, prior to nuclear pore entry.

Concepts: Protein, Cell nucleus, Cell, Eukaryote, Cell biology, Nuclear pore, Nuclear envelope, Endomembrane system